Homework 5

MAS501 Analysis for Engineers, Spring 2011

1. A contraction mapping on Ω is a function f from the metric space (Ω, d) into itself satisfying

$$d(f(x), f(y)) \le c \, d(x, y)$$

for some $c, 0 \leq c < 1$ and all x and y in Ω .

- (a) Prove that a contraction mapping on Ω is uniformly continuous on Ω .
- (b) Prove that if Ω is *complete*, then the equation f(x) = x is solvable in Ω and the solution is unique.

Hints:

- i. Take any element in Ω , say x_1 . And let $x_{n+1} := f(x_n)$ for $n = 1, 2, \cdots$. Prove that the sequence $\{x_n\}$ is Cauchy in Ω and so it converges to some element $x \in \Omega$ (by completeness of Ω).
- ii. Show this element x is a solution to f(x) = x, that is, d(f(x), x) = 0.
- iii. Finally show that the solution to f(x) = x is unique in Ω . What happens when $x \in \Omega$ and $y \in \Omega$ are solutions to the equation f(x) = x?

Note: If f(x) = x, we call the point x a fixed point. Also this type of result is called a fixed point theorem and has many applications.

2. Let f be a uniformly continuous mapping from Ω to Ω' , where Ω and Ω' are metric spaces. Show that if $\{x_n\}$ is a Cauchy sequence in Ω , then $\{f(x_n)\}$ is a Cauchy sequence in Ω' . When f is just continuous, does the result still hold?