Solutions for Homework 7

MAS501 Analysis for Engineers, Spring 2011

1. Suppose that $f^{\prime \prime}$ exists on $[0,1]$ and that $f(0)=f(1)=0$. Suppose also that

$$
\left|f^{\prime \prime}(x)\right| \leq K \quad \text { for } x \in(0,1)
$$

Prove that

$$
\left|f^{\prime}\left(\frac{1}{2}\right)\right| \leq \frac{K}{4}
$$

and

$$
\left|f^{\prime}(x)\right| \leq \frac{K}{2} \quad \text { for } x \in[0,1]
$$

Proof. Let $x \in[0,1]$ be a fixed number. Then by Taylor's formula with remainder,

$$
\begin{array}{ll}
f(0)=f(x)+f^{\prime}(x)(0-x)+\frac{f^{\prime \prime}\left(\xi_{0}\right)}{2}(0-x)^{2} & \text { for some } \xi_{0} \in(0,1) \\
f(1)=f(x)+f^{\prime}(x)(1-x)+\frac{f^{\prime \prime}\left(\xi_{1}\right)}{2}(1-x)^{2} & \text { for some } \xi_{1} \in(0,1)
\end{array}
$$

Subtracting the second equality from the first equality we have

$$
0=-f^{\prime}(x)+\frac{f^{\prime \prime}\left(\xi_{0}\right)}{2} x^{2}-\frac{f^{\prime \prime}\left(\xi_{1}\right)}{2}(1-x)^{2}
$$

Thus, it holds that

$$
\begin{aligned}
\left|f^{\prime}(x)\right| & \leq \frac{K}{2}\left(x^{2}+(1-x)^{2}\right) \\
& =\frac{K}{2}(1-2 x(1-x)) \leq \frac{K}{2}
\end{aligned}
$$

In particular, if $x=1 / 2$, we have

$$
\left|f^{\prime}\left(\frac{1}{2}\right)\right| \leq \frac{K}{2}\left((1 / 2)^{2}+(1-1 / 2)^{2}\right)=\frac{K}{4}
$$

Note: The values of $f(0)$ and $f(1)$ do not matter; only the equality matters.
2. Prove that if f is a continuous nonnegative function on $[a, b]$ and

$$
\int_{a}^{b} f(x) d x=0
$$

then $f(x)=0$ for all x in $[a, b]$.
Proof. Assume the contrary; then there is a $x_{0} \in[a, b]$ such that $f\left(x_{0}\right)>0$. Because f is continuous, for sufficiently small $\epsilon>0$, there is a $\delta>0$ such that $f(x) \geq \epsilon$ whenever $\left|x-x_{0}\right|<\delta$. Therefore

$$
\begin{aligned}
\int_{a}^{b} f(x) d x & \geq \int_{x_{0}-\delta}^{x_{0}+\delta} f(x) d x \\
& \geq \int_{x_{0}-\delta}^{x_{0}+\delta} \epsilon d x \\
& =2 \epsilon \delta>0
\end{aligned}
$$

which is a contradiction.

Another proof. (전현성 씨 답안 기반) For $x \in[a, b]$, define

$$
F(x):=\int_{a}^{x} f(t) d t
$$

(Note that because f is continuous on $[a, b]$, the Riemann integral in the right hand side exists.) Since f is nonnegative,

$$
0 \leq \int_{a}^{x} f(x) d x \leq \int_{a}^{b} f(x) d x=0
$$

Hence for every $x \in[a, b]$, we have

$$
F(x)=\int_{a}^{x} f(x) d x=0
$$

Finally by the Fundamental theorem of calculus it holds that

$$
f(x)=F^{\prime}(x)=0
$$

for all x in $[a, b]$.

