Solutions for Homework 7

MAS501 Analysis for Engineers, Spring 2011

1. Suppose that f'' exists on [0,1] and that f(0) = f(1) = 0. Suppose also that

 $|f''(x)| \le K$ for $x \in (0,1)$.

Prove that

and

$$|f'(x)| \le \frac{K}{2}$$
 for $x \in [0,1]$

 $\left|f'\left(\frac{1}{2}\right)\right| \le \frac{K}{4}$

Proof. Let $x \in [0,1]$ be a fixed number. Then by Taylor's formula with remainder,

$$f(0) = f(x) + f'(x)(0-x) + \frac{f''(\xi_0)}{2}(0-x)^2 \quad \text{for some } \xi_0 \in (0,1),$$

$$f(1) = f(x) + f'(x)(1-x) + \frac{f''(\xi_1)}{2}(1-x)^2 \quad \text{for some } \xi_1 \in (0,1).$$

Subtracting the second equality from the first equality we have

$$0 = -f'(x) + \frac{f''(\xi_0)}{2}x^2 - \frac{f''(\xi_1)}{2}(1-x)^2.$$

Thus, it holds that

$$|f'(x)| \le \frac{K}{2} \left(x^2 + (1-x)^2 \right)$$

= $\frac{K}{2} \left(1 - 2x(1-x) \right) \le \frac{K}{2}.$

In particular, if x = 1/2, we have

$$\left| f'\left(\frac{1}{2}\right) \right| \le \frac{K}{2} \left((1/2)^2 + (1-1/2)^2 \right) = \frac{K}{4}.$$

Note: The values of f(0) and f(1) do not matter; only the equality matters.

2. Prove that if f is a continuous nonnegative function on [a, b] and

$$\int_{a}^{b} f(x) \, dx = 0,$$

then f(x) = 0 for all x in [a, b].

Proof. Assume the contrary; then there is a $x_0 \in [a, b]$ such that $f(x_0) > 0$. Because f is continuous, for sufficiently small $\epsilon > 0$, there is a $\delta > 0$ such that $f(x) \ge \epsilon$ whenever $|x - x_0| < \delta$. Therefore

$$\int_{a}^{b} f(x) dx \ge \int_{x_{0}-\delta}^{x_{0}+\delta} f(x) dx$$
$$\ge \int_{x_{0}-\delta}^{x_{0}+\delta} \epsilon dx$$
$$= 2\epsilon\delta > 0,$$

which is a contradiction.

Another proof. (전현성 씨 답안 기반) For $x \in [a, b]$, define

$$F(x) := \int_{a}^{x} f(t) \, dt.$$

(Note that because f is continuous on [a, b], the Riemann integral in the right hand side exists.) Since f is nonnegative,

$$0 \le \int_a^x f(x) \, dx \le \int_a^b f(x) \, dx = 0.$$

Hence for every $x \in [a, b]$, we have

$$F(x) = \int_{a}^{x} f(x) \, dx = 0.$$

Finally by the Fundamental theorem of calculus it holds that

$$f(x) = F'(x) = 0$$

for all x in [a, b].