Solutions for Homework 8

MAS501 Analysis for Engineers, Spring 2011

1. Let f be continuous on $[a, b]$ and α be a jump function having jumps at the points $x_{1}, x_{2}, \cdots, x_{N}$.
(a) Prove that $\int_{a}^{b} f d \alpha$ exists.

Hint: Use Theorem 6.1.2 in the textbook.
Proof. Let $x_{0}:=a$ and $x_{N+1}:=b$. Then α is a constant, say a_{n}, in $\left(x_{n}, x_{n+1}\right)$ for $n=$ $0,1, \cdots, N$ and you can easily verify that

$$
V\left(\alpha,\left[x_{n}, x_{n+1}\right]\right) \leq\left|f\left(x_{n}\right)-a_{n}\right|+\left|f\left(x_{n+1}\right)-a_{n}\right|<\infty, \quad n=0,1, \cdots, N .
$$

Hence by Theorem 6.3.2 (e), we have

$$
V(\alpha,[a, b])=\sum_{n=0}^{N} V\left(\alpha,\left[x_{n}, x_{n+1}\right]\right)<\infty
$$

So α is of bounded variation on $[a, b]$ and by Theorem $6.3 .3, \alpha$ is expressible as the difference of two increasing functions. Therefore the result follows from Theorem 6.1.2 and Theorem 6.2.1 (c).
(b) Show that

$$
\int_{a}^{b} f d \alpha=\sum_{n=1}^{N} f\left(x_{n}\right) c_{n}
$$

where $c_{n}:=\alpha\left(x_{n}^{+}\right)-\alpha\left(x_{n}^{-}\right), 1 \leq n \leq N$.
Proof. Let $y_{n}:=\left(x_{n-1}+x_{n}\right) / 2$ for $n=1, \cdots, N+1$. Then α has only one jump at x_{n} in [$\left.y_{n}, y_{n+1}\right]$. Hence by (a), $\int_{y_{n}}^{y_{n+1}} f d \alpha$ exists. First assume that $y_{n}<x_{n}<y_{n+1}$ and choose a partition P of $\left[y_{n}, y_{n+1}\right]$ so that $\left[x_{n}-h, x_{n}+h\right], h>0$, is one of the subintervals of P. Then the Riemann-Stieltjes sum is

$$
\begin{aligned}
S(P, f, \alpha) & =f(t)\left[\alpha\left(x_{n}+h\right)-\alpha\left(x_{n}-h\right)\right] \quad \text { for some } t \in\left[x_{n}-h, x_{n}+h\right] \\
& =f(t) c_{n}
\end{aligned}
$$

Because $\int_{y_{n}}^{y_{n+1}} f d \alpha$ exists, the left hand side converges to $\int_{y_{n}}^{y_{n+1}} f d \alpha$ as $|P| \rightarrow 0$. Also if $|P| \rightarrow 0$, then $h \rightarrow 0$ and by continuity of f, the right hand side converges to $f\left(x_{n}\right) c_{n}$. We've just proved that

$$
\int_{y_{n}}^{y_{n+1}} f d \alpha=f\left(x_{n}\right) c_{n}
$$

When $y_{n}=x_{n}$ or $y_{n+1}=x_{n}$, we can prove the same result holds by similar fashion. Also we have

$$
\int_{a}^{y_{1}} f d \alpha=\int_{y_{N+1}}^{b} f d \alpha=0
$$

because α is a constant on $\left[a, y_{1}\right]$ and $\left[y_{N+1}, b\right]$. Finally

$$
\int_{a}^{b} f d \alpha=\int_{a}^{y_{1}} f d \alpha+\sum_{n=1}^{N} \int_{y_{n}}^{y_{n+1}} f d \alpha+\int_{y_{N+1}}^{b} f d \alpha=\sum_{n=1}^{N} f\left(x_{n}\right) c_{n}
$$

2. Give an example of a function α which is continuous on $[0,1]$ and differentiable on $(0,1)$ such that $\alpha \in B V[0,1]$, but α^{\prime} is unbounded on $(0,1)$.

Answer. Define $\alpha(x):=\sqrt{x}$ on $[0,1]$. Then obviously α is continuous on $[0,1]$ and differentiable on $(0,1)$. Also $\alpha^{\prime}(x)=1 /(2 \sqrt{x}) \rightarrow \infty$ as $x \rightarrow 0^{+} ; \alpha^{\prime}$ is unbounded on $(0,1)$. But α is increasing on $[0,1]$ hence of bounded variation.

