Solutions for Homework 10

MAS501 Analysis for Engineers, Spring 2011

- 1. Let f and g be bounded measurable functions defined on a set E of finite measure. Prove the following statements:
 - (a) If $f \leq g$ a.e., then

$$\int_E f \le \int_E g.$$

Proof. Let ψ be a simple function satisfying $\psi \ge g - f$. Since $g - f \ge 0$ a.e., we have $\psi \ge 0$ a.e. From this it follows that $\int_{F} \psi \ge 0,$

whence

$$\int_E g - f \ge 0$$

The proof is complete because $\int_E g - f = \int_E g - \int_E f$.

(b) It holds that

$$\Big|\int_E f\Big| \leq \int_E |f|$$

Proof. Since $\pm f \leq |f|$, by Problem 1a, we have

$$\pm \int_E f = \int_E \pm f \le \int_E |f|,$$

whence $\left|\int_{E} f\right| \leq \int_{E} |f|.$

(c) If $A \leq f(x) \leq B$ a.e., then

$$A m(E) \le \int_E f \le B m(E).$$

Proof. The proof is immediate from Problem 1a and the fact that $\int_E 1 = m(E)$.

- 2. Find examples showing the following statements are true:
 - (a) We may have strict inequality in Fatou's Lemma.

Example. Define $f_n := \chi_{[n,n+1)}$. Then $f_n \to f \equiv 0$ and

$$0 = \int_{\mathbf{R}} f < \liminf_{n \to \infty} \int_{\mathbf{R}} f_n = 1.$$

(b) Monotone Convergence Theorem need not hold for decreasing sequence of functions.

Example. Define $f_n := \chi_{[n,\infty)}$. Then $f_n \searrow f \equiv 0$ and

$$0 = \int_{\mathbf{R}} f \neq \lim_{n \to \infty} \int_{\mathbf{R}} f_n = \infty.$$

3. Let f be a nonnegative measurable function. Show that $\int f = 0$ implies f = 0 a.e.

 $\mathit{Proof.}$ Let D be the domain of f (which is a measurable set). Define

$$E := \{ x \in D : f(x) > 0 \}$$
$$E_n := \{ x \in D : f(x) \ge 1/n \}.$$

Then we have $E = \bigcup_{n=1}^{\infty} E_n$. Also by nonnegativity of f, it follows that

$$0 = \int_{D} f \ge \int_{D} \chi_{E_{n}} f = \int_{E_{n}} f \ge \int_{E_{n}} \frac{1}{n} = \frac{1}{n} m(E_{n}),$$

whence $m(E_n) = 0$ for every n. Therefore, by countable subadditivity, we have

$$m(E) = m\left(\bigcup_{n=1}^{\infty} E_n\right) \le \sum_{n=1}^{\infty} m(E_n) = 0.$$

This means f = 0 a.e. by definition.