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Abstract. We show the well-posedness of the conductivity image
reconstruction problem with a single set of interior electrical current
data and boundary conductivity data. Isotropic conductivity is con-
sidered in two space dimensions. Uniqueness for similar conductivity
reconstruction problems has been known for several cases. However,
the existence and the stability are obtained in this paper for the first
time. The main tool of the proof is the method of characteristics of
a related curl equation.

1. Introduction

We consider an inverse problem of a second order linear elliptic equa-
tion involving interior information. Inverse problems make use of
pieces of information that typically are boundary data but there are
some cases which employ internal data.

Before going further we introduce a common setting on these prob-
lems in terms of electromagnetism. We are concerned with the fol-
lowing linear elliptic equation in a bounded domain Ω ⊂ R

n

−
∂

∂xi

(
aij(x)

∂

∂xj
u
)
= f, in Ω, (1)

−
(
aij(x)

∂

∂xj
u
)
· n = g, on ∂Ω. (2)
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We assume the ellipticity with bounded coefficients such that

λ|ξ|2 ≤
n∑

i,j=1

aijξiξj ≤ Λ|ξ|2, ξ ∈ R
n\{0},

where 0 < λ ≤ Λ < ∞. In order for (1) and (2) have a solution, one
also imposes the condition

∫

Ω
f(x) dx =

∫

∂Ω
g dS.

When aij(x) = a(x)δij , a(x) is a real-valued function, we say the
coefficient is isotropic, when aij(x) is a diagonal matrix we say the
coefficient is orthotropic and for the remaining cases we say the co-
efficient is anisotropic. In all cases aij(x) is symmetric and positive
definite. In this paper, σ(x) also denotes coefficient matrix for all cases
and is called the conductivity. Solution u of (1) and (2) is called the
voltage and J := −σ∇u is called the current density.

Among these kinds of problems we are mainly motivated from
MREIT(Magnetic Resonance Electrical Impedance Tomography) prob-
lems. The MREIT is a thread of research stemmed from the classical
EIT. In chronological order, the area is reviewed in [18],[21] and [19].
In MREIT, one runs an MRI machine and obtains internal magnetic
field data. By collecting 3 spatial magnetic field data one can basically
acquire internal current density data J using Ampere’s Law

J =
1

µ0
∇×B.

Hence constructing internal conductivity can be sought using internal
current density data. MREIT also focuses on inverse problems start-
ing from magnetic field data especially its z-directional component
Bz but this paper discusses only a problem with an internal current
density. Other than MREIT, the aquifer identification problem is
more classical and vast. See [8] for a mathematical introduction. The
problem makes use of u data for reconstruction. Though u in that
problem is not the voltage, let us call this problem a voltage problem
in terms of electromagnetics. There are two different mathematical
approaches for the voltage problem. One seeks a solution by optimiz-
ing an energy functional which is often regularized. When this process
is numerically implemented, the algorithm typically uses an iterative
structure. The other approach locally solves (1) for aij(x) treating
∇u as coefficients. This approach uses a non-iterative procedure and
a local numerical algorithm and is also more straightforward in anal-
ysis. Papers [2] and [17] made important progress in each approach
for an isotropic problem. Recently, there also are active discussions
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on inverse problems from internal power density P := J · ∇u. See [3,
15,13,14]

Also MREIT has been developed beyond these papers since 1992.
Uniqueness for an isotropic problem with one piece of current density
and a conditional stability on the given data are given in [7,9,16]. In
addition, many numerical algorithms have been suggested, see review
papers [18,21,19]. For an anisotropic problem, there is also a recent
paper [4].

In this paper, we introduce a curl-based local approach and this
is closely connected to an above voltage problem. We replace (1) and
(2) with

∇× (rJ) = 0, in Ω, (3)

∇ · J = f, in Ω, (4)

J · n = g, on ∂Ω, (5)

as our governing equations. Here r(x) := σ−1(x) is the resistivity.
For sufficiently regular class of functions, (1),(2) and (3),(4),(5) are
equivalent. Both can be deduced from

∇×E = 0, (6)

∇ · J = f, (7)

σE = J, or E = rJ (Ohm’s Law), (8)

by introducing a potential u so that E = −∇u. We assumed Ω is a
simply connected domain. Note that we do not need f to be zero in
(4). If f = 0, at least in 2-dimensions, we will see in the next section
that the problem is reduced to the equivalent voltage problem. In
other words, many theorems on isotropic problems in MREIT actu-
ally can be deduced directly from results of [17]. In higher dimensions,
they are different however. We will explain this in detail in the next
section.

Curl-related formulas appear in the MREIT literature, see for ex-
ample [10], but a complete use of (3) as an equivalent governing
equation is first applied in this paper. This approach provides a more
natural framework for current problems. It enables a local and linear
analysis as was done in a voltage problem in [17] and thus we es-
tablish well-posedness. Furthermore it does not involve any problem
regularization or optimization.

Although there are the results of [17] which imply many facts on
an isotropic MREIT problem and theorems are already established in
MREIT literature, we provide our own theorem because we have ad-
ditional progress. First, typically an MREIT problem arises in a com-
pact domain and requires us to reconstruct the conductivity in the
exact whole domain. In [17], conductivity is sought on characteristic
lines starting from the inflow boundary. We provided more detailed
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lemmas and a boundary control method to achieve the whole domain
in our coverage. Second, our theorems are set exactly to answer an
inverse question on a solvability of (1) and (2). The forward elliptic
problems are studied conventionally according to a regularity class of
f and aij. Typically for a source term and coefficients in Hölder con-
tinuous or more differentiable class, a solvability is sought in those
Ck,α spaces which is called a Schauder theory. For a source term
and coefficients such as p-th power integrable or weakly differentiable
class, a solvability is sought in appropriate sobolev spaces W k,p and
is called the Calderon-Zygmund theory. In this paper, we answer the
exact mathematical question; an inverse Schauder solvability theory
on σ. Thus we have existence, uniqueness, stability and regularity of
solution σ(x) for given data in the Schauder setting . We will show
we lose one derivative of σ internally and even Hölder continuity on
boundary with prepared counter examples.

Though we only considered a 2-dimensional problem for an isotropic
conductivity in this paper, this is a first step toward an orthotropic
and an anisotropic problem with a same curl-based linear approach
which is the basis for current research by the authors.

2. Preliminaries and Problem Description

2.1. Voltage problems versus current problems

As was mentioned, there are inverse problems with u or J given. Be-
fore we define our problem, we first show how they are equivalent
in 2-dimensions but different in higher dimensions under a condi-
tion f = 0 in (4). The equivalence in 2-dimensions is a well-known
fact as shown in [1] for example . We include the discussion here for
completeness.

For a divergence free J, one introduces a potential. The potential
is a scalar, called a stream function of J,

J = ∇⊥ψ, where ∇⊥ :=

(

0 1
−1 0

)(

∂x
∂y

)

=

(

∂y
−∂x

)

and ∇⊥ψ is automatically divergence free. From (6) and (8), we have

∇×
(
r∇⊥ψ

)
= 0, in Ω,

∇⊥ψ · n = g, on ∂Ω,



Well-posedness in MREIT 5

but

0 = ∇×
(
r∇⊥ψ

)
= (∂x ∂y)

(
0 1
−1 0

)

r

(
0 1
−1 0

)

︸ ︷︷ ︸

:=S

(
∂x
∂y

)

ψ = ∇ ·
(
S∇ψ),

g = ∇⊥ψ · n = (∂yψ −∂xψ)

(
0 1
−1 0

)

T (x) = ∇ψ · T (x), (9)

where T (x) is a counterclockwise unit tangent vector on ∂Ω. If ℓ is
an arc length parameter on ∂Ω, (9) becomes a Dirichlet boundary
condition,

ψ = G on ∂Ω, where G := ψ(x(0)) +

∫ ℓ

0
g(x(ℓ′))dℓ′.

Therefore we have a voltage problem with Dirichlet boundary condi-
tion,

∇ · (S∇ψ) = 0, in Ω, (10)

ψ = G, on ∂Ω. (11)

Once S is known, r is known.
A potential for a divergence free vector field in n-dimension is

an

(

n
2

)

-dimensional quantity. This is the dimension of a space of

2-forms. For 3-dimensions, we know it is a vector potential,

J = ∇×B.

Then (8) becomes

∇×B = −σ∇u. (12)

We take a divergence on (12) and obtain a single and linear equation
for σ. This applies in any dimension. There are no obstacles in ap-
plying what one can do in 2-dimensions and indeed, [17] dealt with
arbitrary dimensions.

However for a current problem, (12) gives us 3 equations for un-
knowns u and σ. Thus for a real-valued σ, this is an over-determined
problem. If we restrict ourselves to know only one component of J or
B, we will have a non-linear problem since the unknown σ and the
unknown components of J or B will be multiplied together. Taking
curl to have ∇× (rJ) = 0 does not help. Hence the properties of the
voltage problems and the current problems are different in dimension
n ≥ 3.

In all cases, if J is given, it is straightforward to consider (3) as
a governing equation. (1) does not give any information other than
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Γ−

Γ+

Γ 0
1

Γ 0
2

Ω

Fig. 1.

divergence of J which we have no control. Considering (1) as a govern-
ing equation is a main reason making the inverse problem non-linear.
One seeks a σ so that with the σ one can solve (1) and (2) for u
and make −σ∇u match a given J. Note that this process has a pde
solving step as its non-linearity. Due to this non-linearity, an algo-
rithm implementing this matching procedure might need an iteration.
However one can see the pde (3) for r is just a linear equation. The
authors and Kwon et al. developed a non-iterative algorithm based
on this approach in [11] and [12].

2.2. Problem description

The vector field J in MREIT is assumed to be divergence free in
general but we did not exclude the general case to prove the unique
existence and other results. J may contain a certain noise and ∇ · J
might not be zero but still we will have a compatible solution. To
be clear, we will now write F instead of J from now on. However, F
cannot be an arbitrary vector field. We will first introduce a notion of
an admissibility which is a sufficient condition for a unique solvability
for conductivity.

Definition 1. Consider a two dimensional vector field F = (f1, f2) ∈
C1,α(Ω) for 0 < α < 1. Denote Γ+ := {x ∈ ∂Ω |F⊥ · n(x) > 0},
Γ− := {x ∈ ∂Ω |F⊥ ·n(x) < 0}, Γ 0 := {x ∈ ∂Ω |F⊥ · n(x) = 0} and
Ω′ := Ω \ Γ 0, where F⊥ := (−f2, f1). The vector field F is called
admissible in this paper if F 6= 0 in Ω and Γ± are connected.

If the conductivity σ is C1,α(Ω) and the source f is C0,α(Ω), then
it is well known that the voltage u is C2,α(Ω) and the current F is
C1,α(Ω) (see Theorem 6.19 [6]). The regularity of F in the definition is
to be consistent with classical Schauder theory. The part of boundary,
Γ 0, consists of two components, Γ 0 = Γ 0

1 ∪Γ
0
2 and each of them can be

a single point. However, in general, it can be more than a single point
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and we include such a case in our analysis (see Figure 1). The well-
posedness of the conductivity reconstruction is stated in the following
theorem using the notion of Definition 1:

Theorem 1. Let Ω be a bounded simply connected open set with C2,α

boundary. Suppose that an admissible vector field F ∈ C1,α(Ω) and a

boundary resistivity r0 ∈ C
0,α(Γ−) are given. Then,

(i) There exists a unique r ∈ C
0,α
loc (Ω

′) ∩ C0(Ω) that satisfies

∇× (rF) = 0 in Ω, (13)

r = r0 on Γ− ⊂ ∂Ω. (14)

(ii) Let r̃ be the solution for an admissible vector field F̃ with Γ̃− = Γ−

and a r̃0 ∈ C0,α(Γ−). Then, for any compact set K ⊂ Ω′,

‖r − r̃‖L∞(K) ≤ C
(

‖r0 − r̃0‖L∞(Γ−) + ‖F− F̃‖α
C1(Ω)

)

, (15)

where C = C
(
K, ‖F‖C1,α(Ω), ‖F̃‖C1,α(Ω), ‖r0‖C0,α(Ω), ‖r̃0‖C0,α(Ω)

)
.

Uniqueness has been shown for several reconstruction methods.
However as far as authors know, the existence and the stability are ob-
tained for the first time. One can find conditional stability in [16] for a
equipotential line method, which contains certain stability structure
obtained in the theorem. The proof of Theorem 1 is given in Section
3. The main technique of its proof is the method of characteristics
because (3) will be a hyperbolic equation.

3. Existence, uniqueness, stability and regularity of the
solution

3.1. Preliminary lemmas

The construction of the resistivity r is based on an analysis of integral
curves of the vector field F⊥. For any given x0 ∈ Ω, the integral curve
is a solution of the ordinary differential equation (or ODE for brevity)

d

dt
x(t) = F⊥(x(t)), x(0) = x0, −∞ < t <∞. (16)

In the following lemma we quickly summarize elementary properties
of integral curves of a smooth vector field such that F 6= 0 in Ω.

Lemma 1. If F ∈ C1(Ω) and F 6= 0 in Ω, then

(i) Integral curves of F⊥ do not touch other ones nor themselves.
(ii) The length of an integral curves of F⊥ is uniformly bounded.
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(iii) Both ends of an integral curve of F⊥ are extendable to the bound-
ary.

Proof. Let x0 be a tangential or intersection point of different integral
curves. This implies that there exist two solutions of (16) locally at
x0. However, F is assumed to be smooth and hence it contradicts the
existence of unique solutions to such ODEs and hence we obtained
the first assertion.

The second assertion depends on the assumption F⊥ 6= 0 in Ω.
Suppose that there is an integral curve x(t) which is infinitely long.
Then, since the domain Ω is bounded, there exist nonempty limit
set ω(x). Since there is no critical point, Poincare-Bendixon implies
that ω(x) is a periodic orbit. This implies that there exists a critical
point in the interior of the orbit, which contradicts to the assumption
F⊥ 6= 0 in Ω. Therefore, all the integral curves are finitely long. Since
Ω is compact, they are uniformly bounded.

Since Ω is compact and |F⊥| > 0 on Ω, there exists a lower bound
a > 0 such that

|F⊥| ≥ a > 0.

Suppose that an integral curve x(t) converges to an interior point
y ∈ Ω as t→ ∞. One can easily see that this is not possible since the
speed of the curve is uniformly bounded from below, i.e., |x′(t)| =
|F⊥(x(t)| ≥ a, the curve cannot stay in a small neighborhood of y
forever. Therefore, the integral curve x should connect two boundary
points of ∂Ω.

We will see in the following lemma that, if the vector field is ad-
missible in the sense of Definition 1, integral curves should connect
the boundaries Γ− and Γ+.

Lemma 2. If F is admissible, then the integral curve of F⊥ that
passes through an interior point x0 ∈ Ω starts from Γ− and ends
at Γ+. Furthermore, there exists T > 0, a uniform upper bound of
the domain size of integral curves.

Proof. Since the vector field F is assumed to be admissible, the
boundary ∂Ω is divided into four parts, ∂Ω = Γ− ∪ Γ 0

1 ∪ Γ+ ∪ Γ 0
2 ,

where F⊥ · n(x) = 0 on Γ 0
i (see Figure 1).

Note that each Γ 0
i is a single point or is an integral curve of F⊥

by the definition of admissibility. From Lemma 1, we know that the
integral curve that passes through an interior point x0 is unique and
has two end points on ∂Ω, i.e., there exist t− < 0 < t+ such that

x′(t) = F⊥(x(t)) for t− < t < t+, x(t−),x(t+) ∈ ∂Ω.

Since x′(t−) ·n ≤ 0 and x′(t+) ·n ≥ 0, we have x(t−) ∈ Γ−∪Γ 0
1 ∪Γ 0

2

and x(t+) ∈ Γ+ ∪ Γ 0
1 ∪ Γ 0

2 . If any of Γ 0
i ’s is not a single point, then
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Γ−

Γ+

Γ 0
1

Γ 0
2

y0

= x(t−)

x(t+)

Fig. 2. An illustration for the proof of Lemma 2.

they are integral curves by definition. Since two integral curves do
not intersect with each other for admissible vector fields, x(t−) ∈ Γ−

and x(t+) ∈ Γ+.
Suppose that Γ 0

1 is a single point and x(t−) ∈ Γ 0
1 as in Figure 2.

(Notice that it is enough to show that this is not possible. Then, it
implies x(t−) 6∈ Γ 0

2 by the same arguments and hence x(t−) ∈ Γ−.
The same arguments also give x(t+) ∈ Γ+ and the first part of proof
is complete.) Then, x(t+) ∈ Γ+ ∪ Γ 0

2 . If Γ
0
2 is not an single point,

then, by the same reason, x(t+) ∈ Γ+. In any case, x(t+) ∈ Γ+ \Γ 0
1 .

Let y0 be an interior point of a region surrounded by the integral
curve x(t), t− < t < t+, and Γ

+. The integral curve y(t) that passes

through the point y0 should start from Γ−. Therefore, the integral
curve y(t) should intersect the integral curve x(t), which contradicts
to Lemma 1. Therefore x(t−) 6∈ Γ 0

1 even if Γ 0
1 is a single point.

Similarly x(t−) 6∈ Γ
0
2 and hence x(t−) ∈ Γ−. Similarly x(t+) ∈ Γ+.

Since the |F⊥| is uniformly bounded below away from zero and the
length of an integral curve is uniformly bounded, there exists T > 0
such that the domain size of any integral curve is less than T , i.e.,

t+ − t− ≤ T,

which completes the proof

We will always consider an admissible vector field in Definition
1. The boundary Γ− is assumed to be smooth, where the curve γ :
[0, L] → Γ− is C2,α. We will write the whole set of integral curves
appeared earlier into a mapping of two parameters, such that

∂

∂t
x(s, t) = F⊥(x(s, t)), x(s, 0) = γ(s), 0 ≤ s ≤ L. (17)

The domain of the mapping x is a the closure of a bounded open
subset E ⊂ [0, L]× [0, T ]. In the following lemma we will see that the
mapping x gives a new coordinate system of the problem.
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Lemma 3. Let F be admissible. (i) The mapping x : E → Ω de-
fined by the relation (17) is a homeomorphism. (ii) Furthermore, its
restriction x : E′ → Ω′ is a C1-diffeomorphism, where E′ = x−1(Ω′).

Proof. Lemma 1 implies that the mapping x : E → Ω is one-to-one.
If not, x(s, t) = x(s′, t′) for some (s, t) 6= (s′, t′). This implies that
an integral curve is touched by another one, if s 6= s′, or by itself,
if s = s′. Then, it contradicts Lemma 1(i). Lemma 2 implies that
Ω′ ⊂ x(E). To show x is a surjection, it is enough to show that Γ 0

1

and Γ 0
2 are actually integral curves x(0, ·) and x(L, ·). If each of them

is a single point, there is nothing to prove. If not, we already know
from Definition 1 that they are.

Now we show that x is continuous. In fact we will show that it is
Lipschitz. Consider

|x(s, t)− x(s′, t′)| ≤ |x(s, t)− x(s, t′)|+ |x(s, t′)− x(s′, t′)|.

The first term is estimated by

|x(s, t)− x(s, t′)| ≤ ‖∂tx‖∞|t− t′| ≤ ‖F‖∞ |t− t′|.

To estimate the second term, we first consider

∂

∂t
|x(s, t)− x(s′, t)|

∣
∣
∣
t=t′

= |F⊥(x(s, t′))−F⊥(x(s′, t′))|

≤ ‖DF‖∞ |x(s, t′)− x(s′, t′)|.

Therefore, Gronwall’s inequality gives, for C = eT‖DF‖∞ ,

|x(s, t)− x(s′, t)| ≤ C|x(s, 0)− x(s′, 0)|

= C|γ(s)− γ(s′)|

≤ C ‖γ′‖∞ |s− s′|.

Combining these estimates, we have, for some constant C > 0,

|x(s, t)− x(s′, t′)| ≤ C|(s, t)− (s′, t′)|. (18)

Furthermore, since x is a continuous bijection from a compact set to
a compact set, its inverse is also continuous and hence x is homeo-
morphism.

Differentiability of the mapping x(s, t) in s and t variables in E′

is well-known from ODE theory (see Theorem 7.5 in [5] on pp.30 and
remark on pp.23). We now show the differentiability of x−1 on Ω′.
To do that it is enough to show that the determinant of the Jacobian
matrix Dx(s, t) is not zero on E′. Differentiation of (17) with respect
to t and s gives

∂t∂sx(s, t) = DF⊥(x(s, t))∂sx(s, t),

∂t∂tx(s, t) = DF⊥(x(s, t))∂tx(s, t),
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which can be written in terms of Jacobian matrix as

∂tDx(s, t) = DF⊥(x(s, t))Dx(s, t).

Therefore, the determinant of the Jacobian matrix is given by

∣
∣Dx(s, t)

∣
∣ =

∣
∣Dx(s, 0)

∣
∣ exp

( ∫ t

0
tr
(
DF⊥(x(s, τ))

)
dτ

)

,

(see Theorem 7.3 in [5], pp.28). On the other hand,
∣
∣Dx(s, 0)

∣
∣ =

∣
∣[∂sx(s, 0), ∂tx(s, 0)]

∣
∣ = γ′(s)× F⊥(γ(s)).

Since F⊥(γ(s)) ·n < 0 for γ(s) ∈ Γ− and γ′(s) ·n = 0, F⊥(γ(s)) and
γ′(s) are not parallel to each other. Therefore,

∣
∣Dx(s, 0)

∣
∣ 6= 0 and

hence
∣
∣Dx(s, t)

∣
∣ 6= 0 for all t > 0 for all (s, t) ∈ E′.

3.2. Proof of Theorem 1

In this section we will show the well-posedness of the inverse problem
of finding r that satisfies (13-14) for given F and r0.

Proof (Proof of Theorem 1). Let x : E → Ω be the homeomorphism
in Lemma 3. Then for any x0 ∈ Ω there exist 0 ≤ s0 ≤ L and
0 ≤ t0 ≤ T such that x0 = x(s0, t0), i.e.,

∂

∂t
x(s0, t) = F⊥(x(s0, t)), 0 ≤ t ≤ T,

x(s0, 0) ∈ Γ−, x(s0, t0) = x0.

If r is smooth, then we have following equivalence relations.

∇× (rF) = 0 ⇐⇒ (rf2)x − (rf1)y = −F⊥ · ∇r + (f2x − f1y )r = 0

⇐⇒ −
d

dt
r(x(s, t)) + (∇× F)r = 0 (19)

⇐⇒
d
dtr(x(s, t))

r(x(s, t))
= ∇× F(x(s, t)).

Therefore, the resistivity r at x0 = x(s0, t0) should be given by

r(x0) = r(x(s0, 0)) exp
(∫ t0

0
∇×F(x(s0, τ))dτ

)

. (20)

Since the relations are equivalent this is the unique weak solution.
In the following, we will first show that

(
r ◦ x

)
(s, t) has the regu-

larity of C0,α(E). Then the Lemma 3 will imply r(x, y) ∈ C0,α(Ω′)∩



12 Yong-Jung Kim and Min Gi Lee

C0(Ω) as in statement of Theorem 1 because x−1(x, y) is continuous
in Ω and differentiable in Ω′.

Let xi ∈ Ω and x(si, ti) = xi for i = 1, 2. First
(
r ◦ x

)
(s, t) is

differentiable with respect to the variable t by (19). Also, x(s, t) is
Lipschitz and r0(s) is Hölder continuous on the boundary Γ− with
respect to the variable s, hence their composition map s→ r(x(s, 0))
is also Hölder continuous with respect to s. Similarly, the map s →

e

( ∫ t0
0

∇×F(x(s,τ))dτ
)

is Hölder continuous and hence r in (20) is Hölder
continuous with respect to s because it is given by the product of
those two maps. Therefore r◦x ∈ C0,α(E) and hence r = r◦x◦x−1 ∈
C0,α(Ω′) ∩ C0(Ω).

Now we show stability, the second part of Theorem 1. Let F̃ be
another admissible vector field and x̃ : Ẽ → Ω and r̃ : Ω → R be
the corresponding diffeomorphism and resistivity, respectively. We
assume Γ− = Γ̃− and x(s, 0) = x̃(s, 0) for s ∈ [0, L] for a simpler
representation. We will show (15), for a fixed compact subsetK ⊂ Ω′.
Let x0 ∈ K be fixed and x0 = x(s0, t0) = x̃(s̃0, t̃0) where ∆t :=
t̃0 − t0 ≥ 0 (see Figure 3 for an illustration). Consider, for t ∈ [0, t0],

|∂tx(s0,t0 − t)− ∂tx̃(s̃0, t̃0 − t)|

= | − F⊥(x(s0, t0 − t)) + F̃
⊥
(x̃(s̃0, t̃0 − t))|

≤ | − F⊥(x(s0, t0 − t)) + F̃
⊥
(x(s0, t0 − t))|

+ | − F̃
⊥
(x(s0, t0 − t)) + F̃

⊥
(x̃(s̃0, t̃0 − t))|

≤ ‖F − F̃‖∞ + ‖DF̃‖∞|x(s0, t0 − t)− x̃(s̃0, t̃0 − t)|.

Therefore, Gronwall’s inequality gives, for 0 < t < t0,

|x(s0, t0 − t)− x̃(s̃0, t̃0 − t)| ≤ C‖F− F̃‖∞, (21)

where C = t0e
t0‖DF̃‖∞ .

Denote x1 := x(s0, 0) ∈ Γ−, x̃1 := x̃(s̃0,∆t) ∈ Ω, h(t) := ∇ ×

F(x(s0, t)) and h̃(t) := ∇× F̃(x̃(s̃0, t+∆t)). Then, from (20),

r(x0) = r(x1)e
∫ t0
0

h(t) dt, r̃(x0) = r̃(x̃1)e
∫ t0
0

h̃(t+∆t)dt.

Hence,
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Γ−

x0 = x(s0, t0) = x̃(s̃0, t̃0)

x1 x̃1

x(t) x̃(t)

Fig. 3. This figure is used as an illustration in the stability proof.

|r(x0)− r̃(x0)|

≤
∣
∣
∣r(x1)e

∫ t0
0

h dt − r(x1)e
∫ t0
0

h̃ dt
∣
∣
∣+

∣
∣
∣r(x1)e

∫ t0
0

h̃ dt − r̃(x̃1)e
∫ t0
0

h̃ dt
∣
∣
∣

≤ ‖r0‖C0(Γ−)

∣
∣
∣e

∫ t0
0

h dt − e
∫ t0
0

h̃ dt
∣
∣
∣+ |r(x1)− r̃(x̃1)|

∣
∣
∣e

∫ t0
0

h̃ dt
∣
∣
∣

≤ ‖r0‖C0(Γ−) max
(

e
∫ t0
0

h dt , e
∫ t0
0

h̃ dt
)∣
∣
∣

∫ t0

0
h− h̃ dt

∣
∣
∣

+|r(x1)− r̃(x̃1)|
∣
∣
∣e

∫ t0
0

h̃ dt
∣
∣
∣

≤ C
(

‖h− h̃‖∞ + |r(x1)− r̃(x̃1)|
)

,

where C depends on the same quantities that the coefficient in (15)
does. Now we estimate the two terms separately.

First, we have

|r(x1)− r̃(x̃1)| ≤ |r(x1)− r̃(x1)|+ |r̃(x1)− r̃(x̃1)|.

≤ ‖r0 − r̃0‖∞ + [r̃]C0,α(K ′)|x(s0, 0) − x̃(s̃0,∆t)|
α

≤ ‖r0 − r̃0‖∞ + [r̃]C0,α(K ′)(C1‖F− F̃‖∞)α,

where, in the second inequality, K ′ is a compact set containing x1

and x̃1 and hence [r̃]C0,α(K ′) is bounded. Also we used the fact that

x1 = x(s0, 0) = x̃(s0, 0) ∈ Γ−. Equation (21) is used in the last
inequality.

The other term is estimated by

|h(t)− h̃(t)| ≤ |∇ × F(x(s0, t))−∇× F̃(x̃(s̃0, t+∆t))|

≤ |∇ × F(x(s0, t))−∇× F̃(x(s0, t))|

+ |∇ × F̃(x(s0, t))−∇× F̃(x̃(s̃0, t+∆t))|

≤ ‖F − F̃‖C1(Ω) + [DF̃]C0,α(Ω)|x(s0, t)− x̃(s̃0, t+∆t)|α

≤ ‖F − F̃‖C1(Ω) + [DF̃]C0,α(Ω)(C1‖F− F̃‖∞)α,
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x

y

y = |x− 1 + ǫ|
4

α − 1

Ω

J

1

1

−1

−1

(a) domain of first example

x

y

−1

−1 1

1
Ω

J

(b) domain of second example

Fig. 4. These illustrations are used to show the optimality in regularity theory.

where estimate (21) is used again. Therefore we have

|r(x0)− r̃(x̃0)|

≤ C4

(

(Cα
1 [DF̃]C0,α(Ω) + 1) + (Cα

1 [r̃]C0,α(K ′) + 1)
)

(

‖r0 − r̃0‖∞ + ‖F− F̃‖α∞ + ‖F − F̃‖C1(Ω)

)

(22)

≤ C
(

‖r0 − r̃0‖∞ + ‖F− F̃‖α
C1(Ω)

)

.

[r̃]C0,α(K ′) depends on F̃, r̃0 and K. So C = C(F, F̃, r0, r̃0,K). Here

we assumed ‖F− F̃‖C1(Ω) < 1 so that ‖F− F̃‖C1(Ω) < ‖F− F̃‖α
C1(Ω)

.

Note that [r̃]C0,α(K ′) in (22) is not bounded as x0 approaches to x(0, t)

or x(L, t) in Γ 0 thus the estimate (22) holds only for K ⊂⊂ Ω′.

3.3. The optimal regularity of r

We obtained in Theorem 1 that r ∈ C
0,α
loc (Ω

′) ∩ C0(Ω). The same
regularity is true for σ if r is away from 0. If r0 > 0, the exponential
term in (20) does not alter the sign, hence r > 0 in Ω and r has
minimum in the compact domain thus is away from 0. Thus we will
freely use r or σ for discussions.

We will show that the regularity cannot be improved. For a for-
ward elliptic problem, σ ∈ C1,α(Ω) guarantees J ∈ C1,α(Ω) and
σ ∈ C1,α(Ω) guarantees J ∈ C1,α(Ω) without a boundary estimate.
Our theorem says that the above sufficient conditions are not neces-
sary conditions. We could lose one derivative interior and even Hölder
continuity on boundary because sometimes a less regular conductivity
gives a regular J. This is seen in the following examples.
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First, we will show that we lose Hölder continuity of σ on bound-
ary, i.e., r 6∈ C0,α(Ω) in general. Consider an example,

r(x, y) := f(y) > 0, u(x, y) := −

∫ y

0
f(y′) dy′.

This is an example of one dimensional electrical current in two space
dimensions and one can easily check that the electrical current is

J = −σ∇u =

(

0
1

)

,

which is real analytic function. Consider a domain given as in Figure
4(a), where a part of its boundary is along the line y = −1. According
to Definition 1, this part of boundary belongs to Γ 0. Set f(y) =

1+ |y + 1|
α

2 . This certainly does not belongs to C0,α(Ω) but belongs

merely to C
0,α
loc (Ω

′). Note that r0 ∈ C0,α(Γ−), provided the curve
at the corner of boundary is set as in Figure 4(a). One might even
consider a discontinuous f , but this case is excluded by an assumption
of Theorem 1 that r0 ∈ C0,α(Γ−) since we are considering a classical

Schauder theory and here r 6∈ C
0,α
loc (Ω

′).
In the next example we will see we could lose one derivative inside

of Ω, i.e., r 6∈ C
0,β
loc (Ω) for any β > α. Let the domain be given as in

Figure 4 (b) and let

r(x, y) :=
1

(

1 + |x|
1

2 (1 + y)
)3 > 0, u(x, y) :=

−x
(

1 + |x|
1

2 (1 + y)
)2 .

Then, the electrical current is

J = −σ∇u =

(
1

−2x|x|
1

2

)

,

which is C1,α(Ω). However r ∈ C0,α(Ω′) but r 6∈ C0,β(Ω′) for any
β > α.

One might wonder if the assumption in theorem 1 that r0 to
C0,α(Γ−) is a source of lowering regularities. However

r(x0) = r(x(s0, 0)) exp
(∫ t0

0
∇×F(x(s0, τ))dτ

)

,

and the regularity of r depends also on the the vector field F, hence
increasing the boundary regularity of r0 to Ck,α(Γ−) for k ≥ 1 does
not improve the regularity.
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3.4. Voltage construction

Now let us construct the voltage u from constructed r. It is well-
defined up to an addition of a constant. If r ∈ C1(Ω), then the
existence of u that satisfies

−∇u = rF in Ω (23)

is clear. Even if r ∈ C0,α(Ω) as in our case, the existence theory of
such a u ∈ H1(Ω) is classical (see Weyl [20]). Since −∇u = rF in Ω,
we conclude u ∈ C1,α(Ω′) ∩C1(Ω).

We can also directly construct u. Define ũ : E → R by

ũ(s, 0) := −

∫ s

0
r0
(
γ(τ)

)
F
(
γ(τ)

)
· γ′(τ)dτ,

ũ(s, t) := ũ(s, 0),

and u : Ω → R by u = ũ ◦ x−1. Then, one can easily see that
−rF = ∇u in Ω.

In summary, we have optimally answered the inverse Schauder
solvability for σ(x) and its by-product u.

4. Boundary control and admissibility

Theorem 2.8 in [1] exactly is saying that one can construct an ad-
missible J by controlling the Neumann boundary condition. For a
completeness we quote the theorem here.

Theorem 2 (Alessandrini et al.). Let g ∈ H−1/2(∂Ω) be such that
∂Ω can be split into 2M closed arcs Γ1, ..., Γ2M such that (−1)jg ≥ 0
on Γj , j = 1, ..., 2M , in the sense of distributions. Let u ∈W 1,2(Ω) be
a solution of (1) and satisfying the Neumann condition (2) on ∂Ω.
Then, the geometric critical points of u in Ω, when counted according
to their indices, are at most M − 1.

By considering a case M = 1, we can easily obtain the admissibility.
For our J ∈ C1,α(Ω) the geometric critical point is the usual critical
point.

Appendix. Comparison between conductivity and resistivity

If r 6= 0 or r is invertible, the conductivity σ is given by σ = r−1, the
inverse of the resistivity. Then, one can easily see that

− div (σ∇u) = div (F).
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If F is an electrical current without noise, then div (F) = 0. If a noise
is included, F is not divergence free in general. Therefore, the above
relation is what we can expect and the curl equation for resistivity is
naturally connected to the divergence equation for conductivity with
a forcing term. Theorem 1 and previous discussion implies that the
resistivity r and voltage u are well-defined if a boundary resistivity
r0 and an admissible F are given.

The curl-based resistivity formulation and the divergence-based
conductivity formulation become different when one is considering
degenerate elliptic operators. The cases σ = 0 or r = 0.

Remember that the positivity of r0 is not assumed in Theorem
1. Even if r0 changes its sign, r is well defined by the relation (20).
However if σ = 0, or r = ∞, not bounded, then our resistivity for-
mulation does not work. J = −σ∇u = 0 for some point and hence
the electrical current is not admissible and Theorem 1 is not appli-
cable in this case. However, if σ = ∞ in a region, the curl equation
∇× (rJ) = 0 with a resistivity r handles the case.

The equivalence between (1),(2) and (3),(4),(5) gives an implica-
tion that, if 0 < r <∞, the conductivity and resistivity formulations
are equivalent. However, if σ = ∞, then it will be a better choice to
work with resistivity r or vice versa.
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