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Abstract
Magnetic resonance electrical impedance tomography (MREIT) is to visualize
the internal current density and conductivity of an electrically conductive object.
Injecting current through surface electrodes, we measure one component of
the induced internal magnetic flux density using an MRI scanner. In order
to reconstruct the conductivity distribution inside the imaging object, most
algorithms in MREIT have required multiple magnetic flux density data by
injecting at least two independent currents. In this paper, we propose a direct
method to reconstruct the internal isotropic conductivity with one component
of magnetic flux density data by injecting one current into the imaging object
through a single pair of surface electrodes. Firstly, the proposed method
reconstructs a projected current density which is a uniquely determined current
from the measured one-component magnetic flux density. Using a relation
between voltage potential and current, based on Kirchhoff’s voltage law, the
proposed method is designed to use a combination of two loops around each
pixel from which to derive an implicit matrix system for determination of the
internal conductivity. Results from numerical simulations demonstrate that
the proposed algorithm stably determines the conductivity distribution in an
imaging slice. We compare the reconstructed internal conductivity distribution
using the proposed method with that using a conventional method with agarose
gel phantom experiments.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Using a magnetic resonance imaging (MRI) scanner, magnetic resonance electrical impedance
tomography (MREIT) utilizes measured magnetic flux density data by injected currents in order
to visualize the conductivity and/or current density distributions inside an imaging object. The
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internal current density distribution has been studied in magnetic resonance current density
imaging (MRCDI) by measuring the whole magnetic flux density data B = (Bx, By, Bz) (Joy
et al 1989, Scott et al 1991).

In an earlier stage of MREIT, assuming that the internal current J = (Jx, Jy, Jz) is
available by rotations of the imaging object in an MR scanner, several conductivity image
reconstruction algorithms were developed using one or two injection currents such as the
J-substitution algorithm (Kwon et al 2002a), current-constrained voltage-scaled reconstruction
algorithm (Birgul et al 2003) and equipotential line methods (Kwon et al 2002b, Ider et al
2003, Lee 2004).

Since an MRI scanner measures only one component Bz of B without rotating the imaging
object, most algorithms for MREIT assume that the conductivity is isotropic and focus on
visualizing its distribution by using one component of the magnetic flux density data (Ider and
Birgul 1998, Kwon et al 2002a, Lee et al 2003, Oh et al 2003, 2004, 2005, Seo et al 2003,
Muftuler et al 2004, Ider and Onart 2004, Gao et al 2006, Hamamura et al 2006, Birgul et al
2006).

Since there exist infinitely many isotropic conductivity distributions which generate the
same magnetic flux density Bz (Kim et al 2003) without any additional information, most
algorithms to reconstruct the isotropic conductivity image using the relation between the
measured Bz data and the conductivity require at least two injection currents and measure the
corresponding Bz data.

Recently, imaging techniques in MREIT have been developed with regard to the capacity
of measurement techniques, as well as numerical reconstruction algorithms. Experimental
results have been reported using animals and the human leg (Kim et al 2008, 2009). For
more practical approaches, reduction in the acquisition time of scanning has become critical
to in vivo implementation of MREIT. Since experimental MREIT techniques have included
interleaved phase-encoding acquisition, two currents with positive and negative polarities,
and with the same duration and amplitude for distinguishing the accumulated phase signal
yield doubling of acquisition time. Moreover, most algorithms for reconstruction of the
internal conductivity distribution require relatively long scanning time because they use plural
magnetic flux density Bz data by independently injected currents.

Although at least two orthogonally injected currents are definitely beneficial in order to
determine the internal conductivity by compensating each other, for some practical applications
for MREIT, information extraction of conductivity using one injection current is important and
provides a meaningful potential in the studies of the human body. Electrical brain stimulation
(EBS) as a technique used in clinical neurobiology in the brain using an electric current
includes deep brain stimulation (DBS) which is a neurosurgical treatment stimulating the
brain by injecting current (Kringelbach et al 2007), cranial electrotherapy stimulation (CES)
for anxiety, depression and drug addiction, transcranial direct current stimulation (tDCS) to
modulate the activity of neurons in the brain by injecting electrical currents (Cogiamanian
et al 2008), etc. Another important feasible application is functional MREIT, as a technique
to image brain activity via conductivity change related to neural activity in a short total scan
time.

Since the biological tissues, particularly skeletal muscle and brain white matter, have
anisotropy due to asymmetric cellular structures, it will be important to extract anisotropic
electrical property corresponding to each component of current flow.

In this paper, we propose a method to reconstruct an isotropic conductivity image using
only one injection current and the corresponding measured Bz data under some feasible
conditions. One is that the difference Jz − J 0

z is small, where Jz is the z-component of the
internal current caused by the injection current and J 0

z is the z-component of the generated
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current when the internal conductivity is homogeneous. From the measured Bz data, we recover
a projected current density JP directly by solving a two-dimensional harmonic equation, which
provides a good approximation to the true current J stably depending on the difference Jz −J 0

z

(Park et al 2007). For practical implementations, a transversally injected current through the
attached electrodes possibly reduces the difference Jz − J 0

z and maximizes the measured Bz

signal by the Biot–Savart law. The other is the use of reference conductivity values given in
a part of the surface. Recent human imaging experiments in MREIT use a carbon-hydrogel
electrode covering large surface area with a known conductivity value to inject current as much
as possible without producing a painful sensation and motion artifact (Kim et al 2009). For
the human leg experiment in Kim et al (2009), the sizes of the carbon electrode and hydrogel
are 80 × 60 × 0.06 mm3 and 80 × 60 × 5.7 mm3, respectively.

Using the projected current instead of the true internal current, we can focus on the
development of an algorithm for reconstruction of the internal conductivity distribution using
the relation between the conductivity and the current. For a given internal current, a key
observation is to relate the internal conductivity directly to the internal current and the unknown
internal voltage u by using Kirchhoff’s voltage law, 0 = ∫

D
∇ × ∇u(r) dr = ∫

∂D
u d�, where

D is an arbitrary region. By taking each pixel as a region D and starting from a pixel with
the known conductivity, we can directly recover the conductivity pixel-by-pixel by using a
previously solved conductivity and combining with Kirchhoff’s voltage law following the
boundary of D. This one-loop method directly recovers the conductivity in a real time with
a partial information of conductivity, but it heavily depends on an evolving path and easily
propagates the noise effect along the evolving path. To overcome these difficulties, we
design another loop which has a common intersection with the loop of the one-loop method.
The designed dual-loop method produces an implicit overdetermined matrix system for the
internal conductivity distribution, which is independent of any pathway and stably determines
the internal conductivity directly using the measured Bz data by one injection current.

The proposed method is demonstrated with numerical simulations and phantom
experiments. In phantom experiments, we used the ICNE MR pulse sequence (Park et al
2007) which injects current up to the data acquisition time to reduce the noise level of
measured Bz data. We reconstructed and compared the interior conductivity distributions of
an agarose gel phantom using both one injection current and two injection currents. The
recovered conductivity image shows the feasibility of the proposed algorithm.

2. Method

We inject a current I through attached electrodes on a three-dimensional conducting object
�. The injection current I produces a voltage distribution u satisfying the following elliptic
partial differential equation:

∇ · (σ∇u) = 0 in �

−σ∇u · n = g on ∂� and
∫

∂�

u ds = 0,
(1)

where n = (n1, n2, n3) is the outward unit-normal vector on ∂� and g is the current density
on ∂� by the injection current I. The internal current density J = −σ∇u and the magnetic
flux density B = (Bx, By, Bz) in � satisfy the Ampere law J = ∇ × B/μ0 where μ0 is the
magnetic permeability of the free space.

The imaging domain � can be expressed as the union of slices which are perpendicular
to the z-axis:

� =
⋃

t∈(−H,H)

�t , where �t = � ∩ {(x, y, z) ∈ R
3|z = t}. (2)
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In the paper Park et al (2007), the only recoverable current is JP = J0 + J∗ from the
measured Bz data, where J0 = ∇α and J∗ = (

∂β

∂y
,− ∂β

∂x
, 0

)
. Here α is a homogeneous voltage

potential satisfying

∇2α = 0 in �

∇α · n = J · n on ∂� and
∫

∂�

α ds = 0,
(3)

and βt (x, y) := β(x, y, t) satisfies the following two-dimensional Laplace equation for each
slice �t ⊂ � :

∇̃2βt = 1

μ0
∇2Bz in �t

βt = 0 on ∂�t ,

(4)

where ∇ = (
∂
∂x

, ∂
∂y

, ∂
∂z

)
and ∇̃ = (

∂
∂x

, ∂
∂y

)
. Equations (3) and (4) show that we can reconstruct

the projected current JP from measured Bz immediately by solving two-dimensional Laplace
equations in the region of interest (ROI). The projected current JP provides an optimal
approximation of the true current J, and the gap J − JP depends only on the longitudinal
component Jz − J 0

z of J − J0.

2.1. Relation between conductivity and current J = −σ∇u

To observe the relation between the discontinuous conductivity and the current flow, we assume
that J(r) = (Jx(r), Jy(r), 0) in � = ⋃

t∈(−H,H) �t , and σ belongs to the following class:

�t :=
{
σ = σ0 +

M∑
k=1

σkχDk

∣∣∣∣D̄k ⊂ �t, D̄k ∩ D̄� = ∅ for k �= �,

σk is smooth in Dk and ∂Dk is smooth

}
, (5)

where χDk
denotes the characteristic function for Dk. For a given current g and σ ∈ �t , the

theory of the elliptic partial differential equation (Gilbarg and Trudinger 1983) leads to

σ0(ξ)∇u+(ξ) · n(ξ) = (σ0(ξ) + σk(ξ))∇u−(ξ) · n(ξ) if ξ ∈ ∂Dk

∇u+(ξ) · τ(ξ) = ∇u−(ξ) · τ(ξ) if ξ ∈ ∂Dk,
(6)

where τ is the unit tangent vector to ∂Dk and u± are

u+ = u|�t\
⋃M

k=1 D̄k
and u− = u|⋃M

k=1 Dk
.

The interior current flow J can be decomposed as

J(ξ) = (J(ξ) · n(ξ))n(ξ) + (J(ξ) · τ(ξ))τ (ξ) for ξ ∈ ∂Dk. (7)

Using (6) and (7), for ξ ∈ ∂Dk , we have

J−(ξ) − J+(ξ) = (J−(ξ) · τ(ξ) − J+(ξ) · τ(ξ))τ (ξ)

= (σk(ξ)∇u−(ξ)) · τ(ξ)τ (ξ). (8)

Relations (6) and (8) imply that it is difficult to distinguish the edge of anomaly near the
region using the relation between the conductivity and the current, where the current flow J
is almost orthogonal to the tangential vector τ on ∂Dk . In fact, with the motivation by the
observation (8) without any assumption on the conductivity, there are infinitely many isotropic
conductivity distributions which generate the same current J in � (Kim et al 2003) even



Conductivity imaging with one injection current in MREIT 7527

when J is a two-dimensional current. For these reasons, most of developed algorithms for
conductivity reconstruction in MREIT, using the relation between the internal conductivity
and the current density flow, evidently require at least two independent injection currents
I i, i = 1, . . . , N, to distinguish discontinuous conductivity.

Further observations on the relationships between the conductivity and the measured Bz

data, under the assumptions that a two-dimensional current J = −σ∇u = −(
σ ∂u

∂x
, σ ∂u

∂y
, 0

)
is

non-vanishing in � and the conductivity value on ∂� is known, guarantee that the measured
Bz with current injected in one dimension uniquely determines the interior conductivity σ in �

(Park et al 2007). The requirement for the use of at least two independent injection currents to
visualize the interior is due to the distinguishability of the conductivity rather than the unique
determination of the conductivity.

For the conductivity values on the surface, recent advancements in MREIT have used
the carbon-hydrogel electrode (HUREV Co. Ltd, Korea), which covers a large part of the
surface with known conductivity values 2.86 × 104 and 0.17 S m−1, respectively. The large
size of these electrodes enables a wide coverage of the object to induce a more uniform current
density distribution inside the imaging region, and provides conductivity values around the
surface of the object, which can be utilized as a reference conductivity for determination of
the internal conductivity.

2.2. Conductivity reconstruction via Kirchhoff’s voltage law

In a previous work in Kwon et al (2002b), the equipotential line technique was introduced by
solving a first-order ordinary differential equation on the equipotential line X(s),

dX

ds
(s) =

(
J(X(s))

|J(X(s))|
)⊥

with X(0) = xb ∈ ∂�t , (9)

where (·)⊥ denotes the counterclockwise right angle rotation of a vector. The equipotential
line technique demonstrates that a given non-vanishing current J and the voltage potential u
on ∂� determine a unique isotropic conductivity by the recovery of the interior potential in
�. Although the projected current JP from the measured Bz data stably approximates the
true current J, one of the difficulties in using the equipotential line technique is due to the
fact that the noise in the current propagates along the equipotential lines. The recovery of
the internal conductivity using the potential by the equipotential line technique by solving
(9) is, therefore, complicated and degraded by artifacts from the equipotential lines. The
recovery of voltage potential using the equipotential lines is also related to noise amplification
by the differentiation of the measured Bz data. Up to now, direct usage of the equipotential line
method is far from practical, requiring more efficient and stable methods for the reconstruction
of an internal potential.

Kirchhoff’s voltage law is one of the fundamental laws which states that the total voltage
around a closed loop must be zero. In this paper, we derive a direct method using Kirchhoff’s
voltage law to find the internal conductivity using the given current J in �. After discretization
of � = ⋃N,N

i,j �ij , 1 � i, j � N, the rectangular pixel �ij with a left-bottom point (xi, yj )

and a right-top point (xi+1, yj+1), we get the following identity by ∇ × ∇u = 0 in �ij :

Jx

(
xi+xi+1

2 , yj

)
σ
(

xi+xi+1
2 , yj

) +
Jy

(
xi+1,

yj +yj+1

2

)
σ
(
xi+1,

yj +yj+1

2

) − Jx

(
xi+xi+1

2 , yj+1
)

σ
(

xi+xi+1
2 , yj+1

) − Jy

(
xi,

yj +yj+1

2

)
σ
(
xi,

yj +yj+1

2

) = 0, (10)

where Jx

(
xi+xi+1

2 , yj

) = −σ
(

xi+xi+1
2 , yj

)
(u(xi+1, yj ) − u(xi, yj )) and the others are

represented similarly. Relating with the conductivity values σ
(
xi+1,

yj +yj+1

2

)
(=σ(pij,2))
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pij,1

Ωij

Ω'ij
0

pij,2=p'ij,1

pij,3=p'ij,4

pij,4

p'ij,2

p'ij,3

(a) (b)

0

0

0

Figure 1. Schematic diagram for the dual loop with respect to a pixel.

and σ
(

xi+xi+1
2 , yj+1

)
(=σ(pij,3)), we can design another region �′

ij as shown in figure 1(b).
Following the boundary path of �′

ij , Kirchhoff’s voltage law yields

Jx

( x ′
i+x ′

i+1
2 , y ′

j

)
σ
( x ′

i+x ′
i+1

2 , y ′
j

) +
Jy

(
x ′

i+1,
y ′

j +y ′
j+1

2

)
σ(x ′

i+1,
y ′

j +y ′
j+1

2 )
− Jx

( x ′
i+x ′

i+1
2 , y ′

j+1

)
σ
( x ′

i+x ′
i+1

2 , y ′
j+1

) − Jy

(
x ′

i ,
y ′

j +y ′
j+1

2

)
σ
(
x ′

i ,
y ′

j +y ′
j+1

2

) = 0. (11)

Identities (10) and (11) by following the two different loops ∂�ij and ∂�′
ij share the common

conductivity values σ
(
xi+1,

yj +yj+1

2

)
(= σ(pij,2) = σ(p′

ij,1)) and σ
(

xi+xi+1
2 , yj+1

)
(= σ(pij,3) =

σ(p′
ij,4)) as shown in figure 1(b). The proposed numerical scheme is to determine conductivity

values at each common region (red-dotted blocks in figure 1(a)) by the two different loops.
For the determination of a representative conductivity value at the common region �ij ∩ �′

ij ,
the designed two loops use full information of J to determine the conductivity stably. For
example, the y-component Jy

(
xi+1,

yj +yj+1

2

)
and the x-component Jx

(
xi+1,

yj +yj+1

2

)
at the point

pij,2 = p′
ij,1 are used simultaneously following the loops ∂�ij and ∂�′

ij , respectively. With
known conductivity values near the boundary, we determine a conductivity value at the
common points

(
xi+1,

yj +yj+1

2

)
and

(
xi+xi+1

2 , yj+1
)

of two loops as a representative conductivity
value in the common pixel in figure 1(b). The representative conductivity value at the common
points yields

Jx(pij,1)

σ (xi, yj−1)
+

Jy(pij,2)

σ (xi, yj )
− Jx(pij,3)

σ (xi, yj )
− Jy(pij,4)

σ (xi−1, yj )
= 0 (12)

Jx(p
′
ij,1)

σ (xi, yj )
+

Jy(p
′
ij,2)

σ (xi+1, yj )
− Jx(p

′
ij,3)

σ (xi, yj+1)
− Jy(p

′
ij,4)

σ (xi, yj )
= 0. (13)

There are 2(N − 1)2 loops and Kirchhoff’s voltage law provides 2(N − 1)2 number of
equations for � = ⋃N,N

i,j �ij , 1 � i, j � N, to determine the (N − 1)2 internal conductivity
distribution. The reconstruction algorithm for the internal conductivity using the dual-loop
method implicitly leads to the following overdetermined system:(

A1

A2

)
s =

(
b1

b2

)
, (14)
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where the vector s consists of resistivity values, the stiff matrix Ai , i = 1, 2, is the interpolated
current density at the reference points pij,k and p′

ij,k, k = 1, . . . , 4, following the dual loop,
and the load vector bi consists of the known voltage difference values using the current
components and the known conductivity values around the surface. The solution s given by
the least-squares method minimizes the square sum of (14) by solving the following normal
system: ((

A1
T A2

T
) (

A1

A2

)
+ λI

)
s = (

A1
T A2

T
) (

b1

b2

)
, (15)

where λ denotes a regularization factor and Ai
T is the transpose matrix of Ai .

We describe the dual-loop algorithm for the conductivity reconstruction.

(i) Solve the projected current densities JP by solving the two-dimensional Laplace equation
(4) using the measured Bz data.

(ii) (a) Reconstruct the stiff matrix Ai, i = 1, 2, and the load vector bi in the system (14)
from the reconstructed projected current JP and known conductivity values around
the surface.

(b) By solving the least-squares system (15), the internal conductivity σ is determined
from the determined resistivity values.

An alternative way to reconstruct the internal conductivity based on Kirchhoff’s voltage
law is to use the one-loop method by following ∂�ij given in figure 1. Under the assumption
of the conductivity near the boundary, we can recover a representative conductivity value for
each loop under consideration following a path covering the ROI:

σ(xi, yj ) = Jy(pij,2) − Jx(pij,3)
Jy(pij,4)

σ (xi−1,yj
)
− Jx(pij,1)

σ (xi ,yj−1)

. (16)

Note that this procedure recovers explicitly all of the internal conductivity in a real time by
starting from a known conductivity at one corner. However, the recovered conductivity values
influenced by the previously recovered conductivity values also propagate noise following
the current flow and may cause abrupt artifacts which influence the next determination
of the conductivity value. When the denominator is close to zero, it is difficult to determine
the conductivity with the one-loop method, and it is critical to take a path to alleviate such a
situation by considering a different injection current.

The proposed dual-loop method compared with the one-loop explicit method determines
the internal conductivity implicitly, which is independent of a path and fully uses the given
internal current information, which combines all current components in the stiff matrix A1

and A2 in (14).

2.3. Experiments setup

2.3.1. Generation of two-dimensional simulated data. We constructed a two-dimensional
finite-element model of a subject � = (0, 1)2 with 128 × 128 rectangular elements. We
configured three objects with different isotropic conductivity values (high conductivity:
2 S m−1, low conductivity: 0.5 S m−1, background: 1 S m−1). Current is injected from
the top to the bottom. Figures 2(a)–(c) show the isotropic conductivity distribution, the
potential distribution and the generated current density, respectively.

Set a Neumann flux g such that

g(x, y) =

⎧⎪⎨
⎪⎩

1, if
∣∣x − 1

2

∣∣ � 1
10 and y = 0

−1, if
∣∣x − 1

2

∣∣ � 1
10 and y = 1

0, otherwise.
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A/cmμ 2

0

2
S/m

0 1
0

1

0 1
0

1

0 1
0

1

-0.2

0.2

0

0

0.7

Figure 2. Two-dimensional simulation setup. (a) Conductivity distribution with high conductivity
(2 S m−1) and low conductivity (0.5 S m−1) anomalies. (b) Voltage potential by solving the elliptic
equation (1). (c) Simulated current density magnitude image.

(1)

(6)

xy
z

(5)

(6)

(8)

(9)

0

2
S/m

(b)(a)

(2)(1) (3)

(5)(4) (6)

Figure 3. Three-dimensional simulation setup. (a) Three-dimensional cylindrical model.
(b) Sectional conductivity distribution at the slices indicated region with high conductivity
(2 S m−1) and low conductivity (0.5 S m−1) anomalies.

For the two-dimensional case, we recovered the conductivity distribution assuming a given
current density to observe the characteristics of the proposed method.

2.3.2. Generation of three-dimensional simulated data. For a three-dimensional numerical
simulation, we considered a cylindrical model with diameter 16 cm and height 12 cm as
shown in figure 3(a). Two pairs of electrodes are attached around the middle of the model,
through which a 10 mA current is injected. The sectional conductivity images of the target
conductivity distribution from the bottom to the top with high conductivity values 2 S m−1,
low conductivity values 0.5 S m−1 and background 1 S m−1 are depicted in figure 3(b).

Figure 4 shows the simulated noiseless Bz data and the true current density magnitude
corresponding to the sectional conductivity images in figure 3 using the three-dimensional
MREIT solver (Lee et al 2003).

2.3.3. Generation of phantom data. For a realistic experiment, we injected current into an
imaging object through a pair of surface electrodes attached on a cylindrical phantom. The
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-6

6E-8

0

4 A/cmμ 2

Figure 4. Three-dimensional simulation setup. The first row and the second row display the
generated magnetic flux density and the current density magnitude image corresponding to the
sectional conductivity images in figure 3, respectively.

-2.0

0

2.0
E-8[T]

0

1

(a) (b) (c)

Figure 5. (a) MR magnitude image. (b) and (c) Images of the measured Bz data due to transversal
and vertical injection currents at the middle imaging slice.

injected current produces an internal current density distribution influenced by the geometry of,
and the conductivity distribution in, the imaging object. We measured only the z-component
of the induced magnetic flux density (Muftuler et al 2004, Lee et al 2005, Birgul et al 2006) by
using the ICNE MR pulse sequence which injected the current between the end of the first RF
pulse and the end of the reading gradient (Park et al 2007). In this paper, we assume a static
multi-slice imaging method and denote the magnetic flux density as Bz(x, y) = Bz(x, y, z0),
where z0 is the center of the selected imaging slice. The phase-encoding gradient is switched
on for a brief period Tpe before the signal is collected during the data acquisition time duration
Ts for a fixed echo time TE.

We used a cylindrical phantom with 120 mm diameter and 120 mm height with two
attached carbon-hydrogel electrodes (HUREV Co. Ltd, Korea) at the middle of the phantom.
We filled the background with a saline solution (1 g l−1 CuSO4, 2.82 g l−1 NaCl) to control
the T1 and T2 decay of spin density. The conductivity value of the background is 0.9 S m−1.
Two cylindrical objects, where the diameters of left and right anomalies are 3.6 and 3 cm,
respectively (see figure 5(a)), are filled with an agar gel (left: 1 g l−1 CuSO4, 1.45 g l−1 NaCl,
15 g l−1 agar; right: 1 g l−1 CuSO4, 2.1 g l−1 NaCl, 15 g l−1 agar) to create a contrast in both
conductivity and spin density; the conductivity values of the left one and the right one are 1.6
and 1.2 S m−1, respectively.
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(b)(a) (c) (d)
0

2
S/m

Figure 6. Two-dimensional simulation experiment results. (a) and (b) Reconstructed first and
third updated conductivity images respectively using the J-substitution method with one injection
current. (c) and (d) Reconstructed conductivity images using the one-loop method and the dual-
loop method, respectively.

After positioning the phantom inside a 3.0 T MRI scanner (Magnum 3, Medinus, Korea),
we collected the k-space MR data using the spin pulse sequence. Figures 5(b) and (c) are the
measured Bz images of the phantom at the center imaged slice due to transversal and vertical
injection currents, respectively.

We injected a 10 mA current and used the total current injection time duration of
Tc + Ts = 26 ms, Tc = 22 ms and data acquisition time Ts = 3.584 ms for a fixed echo
time TE = 30 ms in the ICNE pulse sequence. The slice thickness was 6 mm with no slice
gap, the number of axial slices was 8 at the center of the phantom and TR/TE = 1000/25 ms.
The FOV was 180×180 mm2 with the matrix size 128 × 128 and the NEX (number of
excitation/acquisition) was 1.

3. Results

3.1. Numerical simulation results

3.1.1. Two-dimensional simulation results. To observe the relation between the one current
and the conductivity, we reconstructed the conductivity with the provided internal current
J = (Jx, Jy). Figures 6(a) and (b) show the reconstructed conductivity images σ 1 and σ 3,
respectively, using the J-substitution algorithm with one given internal current J (Kwon et al
2002a):

σn(x, y) = −Jx(x, y)un−1
x (x, y) − Jy(x, y)un−1

y (x, y)(
un−1

x (x, y)
)2

+
(
un−1

y (x, y)
)2 , n = 1, 2, . . . , (17)

where un is the nth updated potential by solving (1) with the conductivity distribution of σn−1.
The reconstructed σ 1 shows that the edge of the anomaly D with a low conductivity value
0.5 S m−1 was not clear because the current J was relatively parallel to the outer normal
vector of ∂D, and therefore the third updated σ 3, which was influenced by the previous
updated conductivity, also could not distinguish the edge of the anomaly clearly even if the
conductivity value was fixed near the boundary of �.

Figure 6(c) shows the reconstructed conductivity using the one-loop method starting from
left-top of �. We directly implemented the method, and the reconstructed conductivity was
severely deteriorated by a pixel including abruptly changed current flow. Although, of course,
it may be possible to generate a better reconstructed image than the reconstructed one in
figure 6(c) by a more careful management of the current flow and noise , it is inherently
difficult to reflect a local change of the current flow and to manage the noise effect following
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Figure 7. Three-dimensional simulation results. The first, second and third rows show the
reconstructed projected current by adding random noise, SNR = ∞, 100, 50, to Bz data at the
sectional slices in figure 3, respectively.

the current flow by the one-loop method which reconstructs the conductivity pixel-by-pixel
using a pathway (Kwon et al 2002b, Ozdemir et al 2004).

The reconstructed conductivity using the proposed dual-loop method is displayed in
figure 6(d). We took a dual loop as in figure 1, which is induced to a global system
AT Ax = AT b, A = (A1

A2

)
and b = ( b1

b2

)
, combining Kirchhoff’s law and the resistivity

directly. To estimate that the condition number of AT A was 183 804.4, we used the power
method and inverse power method for the largest and the smallest eigenvalues, respectively.
The equipped over-determined matrix system was solved by a conventional sparse matrix
conjugate gradient solver.

3.1.2. Three-dimensional simulation results. We depicted the projected current JP =
J0 +

(
∂β

∂y
,− ∂β

∂x
, 0

)
by solving (4) in figure 7 at the middle slices of the cylindrical model

in figure 3(a). The recovered projected current JP shows considerable information of the true
current J even if the true current is not exactly two-dimensional current.

Since the noise standard deviation sBz
of the measured Bz is inversely proportional to the

width of injected current, Tc, and the SNR of the MR magnitude image ϒ (Scott et al 1992) as

sBz
= 1

2γ Tcϒ
, (18)

to test the tolerance of the projected current to artificially generated noise, we added random
noise by following sBzϒ

SNR , where γ = 26.75 × 107 rad T−1 s−1 denoted the gyromagnetic ratio
of hydrogen and the current injection time Tc = 50 ms. The second and third rows in figure 7
show the reconstructed projected current by adding random noise, SNR = 100 and 50 cases,
to Bz data at the sectional slices in figure 3, respectively.

With the projected current JP , we recovered the conductivity images at the middle slices
in figure 3. To prove the performance of the dual-loop algorithm, we used two internal
projected currents by vertical and horizontal injection currents which induced the doubled



7534 T H Lee et al

0

2
S/m

Figure 8. Three-dimensional simulation results at the middle slices in figure 3. The first row shows
the reconstructed conductivity images using two projected currents JP,1 and JP,2. The second, the
third, and the fourth row show the reconstructed conductivity images using the dual-loop method
with one current JP corresponding to the noise level SNR = ∞, 100 and 50, respectively.

over-determined system of (14). The first row in figure 8 shows the reconstructed conductivity
images using two projected currents. The second, the third, and the fourth row show the
reconstructed conductivity images using the dual-loop method with one projected current
JP corresponding to the vertically injected current and the noise level SNR = ∞, 100 and
50, respectively. For the noise level SNR = ∞, the estimated condition numbers of the
overdetermined system AT Ax = AT b for the vertically injected current were 87 607.4, 208
594.7, 288 736.9, 304 122.3 and 284 449.9 corresponding to the slices from NC−2 to NC+2,
respectively.

For each noise level SNR = ∞, 100, 50, the relative errors Er(σ
r) between the

reconstructed conductivity and the true σ defined by

Er(σ
r) := ‖σ r − σ‖NC+k

‖σ‖NC+k

, k = −2,−1, . . . , 2, (19)

are shown in table 1, where ‖ · ‖ is the L2-norm and NC denotes the middle imaging slice.

3.1.3. Phantom experiment results. Figures 9(a) and (b) ((c) and (d)) show the JP
x

and JP
y components of the reconstructed projected current JP = J0 + J∗ corresponding

to the measured Bz data in figure 5(b)((c)), respectively. Using the projected current
JP = (

J 0
x + ∂β

∂y
, J 0

y − ∂β

∂x
, J 0

z

)
, we reconstructed the internal conductivity distribution σ to

prove the proposed algorithm.
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Figure 9. Phantom experiment results. (a) and (b) ((c) and (d)) Recovered current component
JP

x and JP
y corresponding to the measured magnetic flux density data Bz in figure 5(b) ((c)),

respectively.

Table 1. Relative L2-error Er(σ
r ) for the dual-loop method corresponding to the reconstructed

conductivities in figure 8 where NC denotes the middle slice.

Er [JP,1, JP,2, ∞] Er [JP , ∞] Er [JP , 100] Er [JP , 50]

NC−2 0.1709 0.2739 0.1859 0.1879
NC−1 0.1718 0.1751 0.1825 0.2137
NC 0.1669 0.1927 0.1865 0.2258
NC+1 0.1740 0.2024 0.2247 0.2356
NC+2 0.1873 0.2318 0.2346 0.2256

The magnitude image depending on the T2 (or T ∗
2 ) decay in figure 5(a) included a defected

region D around the right cylindrical anomaly. From the analysis by Scott et al (1992)
and Sadleir et al (2005), the noise standard deviation sBz

of the measured Bz is inversely
proportional to the current pulse width Tc and the intensity of the MR magnitude image ϒ as

sBz
= 1

2γ Tcϒ
. (20)

Since the intensity of the magnitude in D was weak, the measured Bz data in figure 5(b) and
(c) were also defected in the region D.

To reconstruct the conductivity, we used the transversal J-substitution algorithm (Nam et al
2007), which directly used two independent currents. Figure 10(a) shows the reconstructed
conductivity image using two measured Bz data simultaneously, corresponding to figures 5(b)
and (c). We made an overdetermined system (14) and used a conventional conjugate gradient
solver to obtain the internal conductivity distribution. The estimated condition number
of the overdetermined system AT Ax = AT b was 68 611.5. Comparing the reconstructed
conductivity using two measured Bz data generated by transversal and vertical injected
currents, figure 10(b) shows the recovered conductivity image using the proposed dual path
method with the measured Bz data by the transversal injection current. Image (c) shows the
recovered conductivity by using the measured Bz data by the vertically injected current. From
figures 10(b) and (c), we observed that the dual-loop method stably recovered the conductivity
and provided distinguishable contrast of conductivity.

4. Discussion

There are two main steps to apply the dual-loop method to reconstruct the conductivity
distribution using one injection current: the first step is to recover the internal current on the
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Figure 10. Phantom experiment results. (a) Recovered conductivity image using the transversal J-
substitution algorithm with the two measured Bz data by horizontal and vertical injection currents.
(b) and (c) Recovered conductivity images using the proposed dual-loop method with the measured
Bz data by transversal and vertical injection currents, respectively.

imaging slice from the measured Bz data and the second step is to recover the conductivity
distribution from the recovered single internal current. The projected current, JP = J0 + J∗,
obtained by solving the two-dimensional harmonic equation (4) has provided a quite feasible
internal current in many numerical and phantom experiments when the z-component of J is
similar to the z-component of J0. A critical step is to extract the conductivity information
from the one internal current. Since MREIT imaging techniques to visualize the conductivity
have suffered from the measured noise in Bz, if experimental environments allow a sufficient
scanning time using plural independent injection currents, the use of plural measured Bz data
may provide a better conductivity image by compensating each other.

In section 2.2, we assumed known conductivity values near the surface to derive the
proposed dual-loop method. Although the one-loop method is very unstable to recover the
whole conductivity distribution in �, theoretically, it needs only one reference conductivity
value at a starting pixel to determine conductivity values depending on a path covering �.
Considering the advantage of the one-loop method, the assumed known conductivity values
near the surface can be partially recovered by the one-loop method, where the denominator
Jy(pij,4)

σ (xi−1,yj
)
− Jx(pij,1)

σ (xi ,yj−1)
in (16) provides a sufficient signal.

However, using one measured Bz data by one injection current is strongly recommended
in functional MREIT which is one of the promising works in MREIT or in some practical
situations such as DBS and organs near the heart. We focused on reconstructing the
conductivity using one measured Bz data with the reference conductivity values near the
boundary. In spite of numerous potential clinical applications of MREIT as discussed in
Woo and Seo (2008), scaled conductivity imaging of the human leg was the first human
imaging experiment in MREIT (Kim et al 2009). It is still difficult to perform in vivo human
experiments due to a long scan time and high injection current. In the case of brain imaging
in MREIT, postmortem and in vivo animal imaging experiments (Kim et al 2008, 2009)
have reconstructed the conductivity distribution in the brain region, and the measured Bz

were seriously defected in other local regions where phase signals and MR magnitude image
data are small. Defected situations may occur in local regions belonging to lungs, liver,
head and bones in which typical MR images have a very low SNR. Although the current is
shunted around the scalp and limits an amount of current into the brain, recent experiments
in MREIT reports that the flexible carbon-hydrogel electrodes with a large surface area can
inject more current without producing a painful sensation (9 mA current for the human leg
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case). For partial conductivity information near the boundary, it seems possible that the usage
of the measured Bz data near the boundary with known conductivity values can determine the
absolute conductivity value in the brain using the dual-loop method. The development of a
local approach algorithm by generalizing the projected current and the dual-loop method for
a defected Bz data will be valuable in MREIT.

In the case of DBS using one injection current, it is difficult to apply the conventional
techniques in MREIT to visualize the internal conductivity distribution. The proposed dual-
loop method using the measured Bz corresponding to one injection current may provide a
contrast conductivity image and/or the current flow around the DBS electrode.

The projected current JP is recovered by the reconstruction of ∇̃β in (4), and the noise
level of JP suppresses the noise amplification by the double differentiation of Bz by solving
the elliptic partial differential equation. For the equipotential line technique (Kwon et al
2002b), the recovery of a potential using the equipotential line from a given current J also
includes noise accumulation along the equipotential lines, and the recovery of the conductivity
from the recovered potential also amplifies the noise. In this sense, even the one-loop method
directly applying Kirchhoff’s voltage law may be more advantageous than the equipotential
method. The noise amplification by solving the over-determined system in (14) depends on
the noise level of the stiff matrices A∞ and A∈, composed of JP , and the condition number of
the normal matrix in (15).

Since the projected current JP = J0 + J∗ can be recovered when the conductivity is
anisotropic, it will be very useful to investigate the relation between the projected current and
the more general anisotropic conductivity. One promising work based on one measured Bz by
one injection current is to develop a reconstruction algorithm for the anisotropic conductivity.
Diffusion tensor imaging is a practical technique that enables us to investigate the anisotropy
of nerve fibers in the brain of a human. We believe that MREIT may be a possible approach to
obtain anisotropic properties in the brain and to investigate the associated clinical usage. Our
future work will include the development of an efficient and stable algorithm for anisotropic
conductivity imaging.

5. Conclusion

In this paper, we propose a new algorithm, the dual-loop method, to reconstruct the isotropic
conductivity distribution in the electrically conductive object with the measured magnetic flux
density Bz by only one injection current. To reconstruct the conductivity, first we determine the
projected current JP from the measured Bz which is a good approximation of the true current J.
By investigating the relations between the projected current flow and the interior potential, we
designed two loops around each pixel from which to reconstruct an implicit over-determined
matrix system for the determination of the internal conductivity. Results from numerical
simulations show that the dual-loop algorithm stably determined the conductivity distribution
in the imaging slice. We compared the reconstructed conductivities using one injection current
and two independent injection currents with agarose gel phantom experiments.

Acknowledgments

O I Kwon was supported by the Basic Science Research Program through the National Research
Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology
(2010-0022398). E J Woo was supported by the SRC/ERC program (R11-2002-103) of
MEST/NRF. M G Lee and Y J Kim were supported by the National Research Foundation of
Korea (2009-0077987).



7538 T H Lee et al

References

Birgul O, Eyuboglu B M and Ider Y Z 2003 Current constrained voltage scaled reconstruction (CCVSR) algorithm
for MR-EIT and its performance with different probing current patterns Phys. Med. Biol. 48 653–71

Birgul O, Hamamura M, Muftuler L and Nalcioglu O 2006 Contrast and spatial resolution in MREIT using low
amplitude current Phys. Med. Biol. 51 5035–49

Cogiamanian F, Vergari M, Pulecchi F, Marceglia S and Priori A 2008 Effect of spinal transcutaneous direct current
stimulation on somatosensory evoked potentials in humans Clin. Neurophysiol. 119 2636–40

Gilbarg D and Trudinger N S 1983 Elliptic Partial Differential Equations of Second Order (Berlin: Springer)
Gao N, Zhu S A and He B A 2006 New magnetic resonance electrical impedance tomography (MREIT)

algorithm: the RSM-MREIT algorithm with applications to estimation of human head conductivity Phys.
Med. Biol. 51 3067–83

Hamamura M, Muftuler L, Birgul O and Nalcioglu O 2006 Measurement of ion diffusion using magnetic resonance
electrical impedance tomography Phys. Med. Biol. 51 2753–62

Ider Y Z and Birgul O 1998 Use of the magnetic field generated by the internal distribution of injected currents for
electrical impedance tomography (MR-EIT) Elektrik 6 215–25

Ider Y Z and Onart S 2004 Algebraic reconstruction for 3D MR-EIT using one component of magnetic flux density
Physiol. Meas. 25 281–94

Ider Y Z, Onart S and Lionheart W R B 2003 Uniqueness and reconstruction in magnetic resonance-electrical
impedance tomography(MR-EIT) Physiol. Meas. 24 591–604

Joy M L G, Scott G C and Henkelman R M 1989 In vivo detection of applied electric currents by magnetic resonance
imaging Magn. Reson. Imaging 7 89–94

Kim H J, Kim Y T, Minhas A S, Jeong W C, Woo E J, Seo J K and Kwon O J 2009 In vivo high-resolution conductivity
imaging of the human leg using MREIT: the first human experiment IEEE Trans. Med. Imaging 28 1681–7

Kim Y J, Kwon O, Seo J K and Woo E J 2003 Uniqueness and convergence of conductivity image reconstruction in
magnetic resonance electrical impedance tomography Inverse Problems 19 1213–25

Kim H J et al 2008 In vivo electrical conductivity imaging of a canine brain using a 3 T MREIT system Physiol.
Meas. 29 1145–55

Kringelbach M, Jenkinson N, Owen S and Aziz T 2007 Translational principles of deep brain stimulation Nat. Rev.
Neurosci. 8 623–35

Kwon O, Lee J Y and Yoon J R 2002b Equipotential line method for magnetic resonance electrical impedance
tomography (MREIT) Inverse Problems 18 1089–100

Kwon O, Woo E J, Yoon J R and Seo J K 2002a Magnetic resonance electrical impedance tomography (MREIT):
simulation study of J-substitution algorithm IEEE Trans. Biomed. Eng. 48 160–7

Lee B I, Lee S H, Kim T S, Kwon O, Woo E J and Seo J K 2005 Harmonic decomposition in PDE-based denoising
technique for magnetic resonance electrical impedance tomography IEEE Trans. Biomed. Eng. 52 1912–20

Lee B I, Oh S H, Woo E J, Lee S Y, Cho M H, Kwon O, Seo J K, Lee J Y and Baek W S 2003 Three-dimensional
forward solver and its performance analysis in magnetic resonance electrical impedance tomography (MREIT)
using recessed electrodes Phys. Med. Biol. 48 1971–86

Lee J Y 2004 A reconstruction formula and uniqueness of conductivity in MREIT using two internal current
distributions Inverse Problems 20 847–58

Muftuler L, Hamamura M, Birgul O and Nalcioglu O 2004 Resolution and contrast in magnetic resonance electrical
impedance tomography (MREIT) and its application to cancer imaging Tech. Cancer Res. Treat. 3 599–609

Nam H S, Lee B I, Choi J, Park C and Kwon O 2007 Conductivity imaging with low level current injection using
transversal J-substitution algorithm in MREIT Phys. Med. Biol. 52 6717–30

Oh S H, Lee B I, Park T S, Lee S Y, Woo E J, Cho M H, Kwon O and Seo J K 2004 Magnetic resonance electrical
impedance tomography at 3 Tesla field strength Magn. Reson. Med. 51 1292–6

Oh S H, Lee B I, Woo E J, Lee S Y, Cho M H, Kwon O and Seo J K 2003 Conductivity and current density image
reconstruction using harmonic Bz algorithm in magnetic resonance electrical impedance tomography Phys.
Med. Biol. 48 3101–16

Oh S H, Lee B I, Woo E J, Lee S Y, Kim T S, Kwon O and Seo J K 2005 Electrical conductivity images of biological
tissue phantoms in MREIT Physiol. Meas. 26 S279–88

Ozdemir M, Eyuboglu B M and Ozbek O 2004 Equipotential projection-based magnetic resonance electrical
impedance tomography and experimental realization Phys. Med. Biol. 49 4765–83

Park C, Lee B I and Kwon O 2007 Analysis of recoverable current from one component of magnetic flux density in
MREIT Phys. Med. Biol. 52 3001–13

Sadleir R et al 2005 Noise analysis in MREIT at 3 and 11 Tesla field strength Physiol. Meas. 26 875–84
Scott G C, Joy M L G, Armstrong R L and Henkelman R M 1991 Measurement of nonuniform current density by

magnetic resonance IEEE Trans. Med. Imaging 10 362–74

http://dx.doi.org/10.1088/0031-9155/48/5/307
http://dx.doi.org/10.1088/0031-9155/51/19/020
http://dx.doi.org/10.1016/j.clinph.2008.07.249
http://dx.doi.org/10.1088/0031-9155/51/12/005
http://dx.doi.org/10.1088/0031-9155/51/11/005
http://dx.doi.org/10.1088/0967-3334/25/1/032
http://dx.doi.org/10.1088/0967-3334/24/2/368
http://dx.doi.org/10.1016/0730-725X(89)90328-7
http://dx.doi.org/10.1088/0266-5611/19/5/312
http://dx.doi.org/10.1088/0967-3334/29/10/001
http://dx.doi.org/10.1038/nrn2196
http://dx.doi.org/10.1088/0266-5611/18/4/310
http://dx.doi.org/10.1109/10.979355
http://dx.doi.org/10.1109/TBME.2005.856258
http://dx.doi.org/10.1088/0031-9155/48/13/309
http://dx.doi.org/10.1088/0266-5611/20/3/012
http://dx.doi.org/10.1088/0031-9155/52/22/011
http://dx.doi.org/10.1002/mrm.20091
http://dx.doi.org/10.1088/0031-9155/48/19/001
http://dx.doi.org/10.1088/0967-3334/26/2/026
http://dx.doi.org/10.1088/0031-9155/49/20/008
http://dx.doi.org/10.1088/0031-9155/52/11/005
http://dx.doi.org/10.1088/0967-3334/26/5/023
http://dx.doi.org/10.1109/42.97586


Conductivity imaging with one injection current in MREIT 7539

Scott G C, Joy M L G, Armstrong R L and Hankelman R M 1992 Sensitivity of magnetic resonance current density
imaging J. Magn. Reson. 97 235–54

Seo J K, Yoon J R, Woo E J and Kwon O 2003 Reconstruction of conductivity and current density images using only
one component of magnetic field measurements IEEE Trans. Biomed. Eng. 50 1121–4

Woo E J and Seo J K 2008 Magnetic resonance electrical impedance tomography (MREIT) for high-resolution
conductivity imaging Physiol. Meas. 29 R1–26

http://dx.doi.org/10.1109/TBME.2003.816080
http://dx.doi.org/10.1088/0967-3334/29/10/R01

	1. Introduction
	2. Method
	2.1. Relation between conductivity and current
	2.2. Conductivity reconstruction via Kirchhoff's voltage law
	2.3. Experiments setup

	3. Results
	3.1. Numerical simulation results

	4. Discussion
	5. Conclusion
	Acknowledgments
	References

