Well-posedness in anisotropic electrical conductivity reconstruction from three sets of internal current data

Min Gi Lee

Department of Mathematical Sciences, KAIST
335 Gwahangno, Yuseong-gu, Daejeon, 305-701, Republic of Korea
Fax: +82-42-350-5710
email: yongkim@kaist.edu, mg.leemail@gmail.com
June 8, 2012

Abstract.

1. Introduction

2. Well-posedness of isotropic conductivity reconstruction problem

3. Existence and Uniqueness of anisotropic conductivity reconstruction problem

Here, Ω is a simply connected bounded region with smooth boundary.
Lemma 1. Let $A(x)$ be a smooth symmetric matrix field on $\bar{\Omega}$. Assume $A(x) \neq 0$ and $\operatorname{det} A(x)<0$ for all $x \in \bar{\Omega}$. Then there are two smooth vector field v and w such that $v \neq 0, w \neq 0$ and $\langle A v, v\rangle=<A w, w\rangle=0$ for all $x \in \bar{\Omega}$. Furthermore, if $\langle A(x) V, V>=0$ for some V at x, then V is a scalar multiple of $v(x)$ or $w(x)$.

Proof. Let's write $A(x)$ with entries $\left(\begin{array}{ll}a(x) & b(x) \\ b(x) & c(x)\end{array}\right)$, then $a(x) c(x)-b(x)^{2}<0$ by assumption.

If $V=\left(V_{1}, V_{2}\right)$ and $<A(x) V, V>=0$ then

$$
\begin{equation*}
a(x) V_{1}^{2}+2 a(x) b(x) V_{1} V_{2}+c(x) V_{2}^{2}=0 \tag{1}
\end{equation*}
$$

Let's define two smooth vector field v and w as

$$
\begin{equation*}
v:=\left(-b-b \sqrt{1-\frac{a c}{b^{2}}}, a\right), \quad w:=\left(c,-b-b \sqrt{1-\frac{a c}{b^{2}}}\right) . \tag{2}
\end{equation*}
$$

Then we can check $v(x)$ and $w(x)$ are two non-trivial linearly independent solutions of (1) for each x. If $a(x) \neq 0$,

$$
\left(\frac{-b+b \sqrt{1-\frac{a c}{b^{2}}}}{a}\right) v(x)=\left(c,-b+b \sqrt{1-\frac{a c}{b^{2}}}\right) \neq w(x) .
$$

Unless if $c(x) \neq 0$,

$$
\left(\frac{-b+b \sqrt{1-\frac{a c}{b^{2}}}}{c}\right) w(x)=\left(-b+b \sqrt{1-\frac{a c}{b^{2}}}, a\right) \neq v(x) .
$$

If both $a(x)=c(x)=0$, by assumption $b(x) \neq 0$ and

$$
v(x)=(-2 b, 0), \quad w(x)=(0,-2 b) .
$$

Therefore $v(x) \neq 0$ and $w(x) \neq 0$ for all $x \in \bar{\Omega}$ and are linearly independent. Finally, suppose any V satisfies (1). If $a(x) \neq 0$, then $V_{1} / V_{2}=$ $\frac{-b \pm \sqrt{b^{2}-a c}}{a}$, so we have only two possible ratios of components that are the ratios of $v(x)$ and $w(x) . c(x) \neq 0$ or $a(x)=c(x)=0, b(x) \neq 0$ case can be similarly proved.

Definition 1 (Admissibility). The data of three smooth vector fields $\left(\mathbf{J}_{1}, \mathbf{J}_{2}\right.$, on $\bar{\Omega}$ is admissible if following properties are satisfied.

1. $\left(\mathbf{J}_{1}, \mathbf{J}_{2}, \mathbf{J}_{3}\right)$ are all divergence free so that there exist three smooth streamfunction $\left(\psi_{1}, \psi_{2}, \psi_{3}\right)$.
2. The map $(\xi(x, y), \eta(x, y)):=\left(\psi_{2}(x, y),-\psi_{1}(x, y)\right)$ are globally defined diffeomorphism between $\bar{\Omega}$ and its image.
3. The hessian of ψ_{3} in (ξ, η) coordinate chart, the $D^{2} \psi_{3} \neq 0$ and $\operatorname{det} D^{2} \psi_{3}<$ 0 for all (ξ, η).
4. Two vector fields defined by matrix field $D^{2} \psi_{3}$ as in Lemma 1 are admissible in the sense of definition @@@.

Definition 2. $\Gamma_{v}^{-}:=\Gamma^{-}$for vector field v in the definition @@@ and $\Gamma_{w}^{-}:=\Gamma^{-}$for vector field w.

Theorem 1. blabla

From Ohm's Law,

$$
\begin{aligned}
\binom{-\psi_{y}}{\psi_{x}} & =\sigma\binom{u_{x}}{u_{y}} \\
\left(\begin{array}{cc}
\partial_{y} \eta & -\partial_{y} \xi \\
-\partial_{x} \eta & \partial_{x} \xi
\end{array}\right)\binom{-\psi_{\eta}}{\psi_{\xi}} & =\sigma\left(\begin{array}{c}
\partial_{x} \xi \\
\partial_{x} \eta \\
\partial_{y} \xi \\
\partial_{y} \eta
\end{array}\right)\binom{u_{\xi}}{u_{\eta}} \\
\binom{-\psi_{\eta}}{\psi_{\xi}} & =\frac{1}{\xi_{x} \eta_{y}-\eta_{x} \xi_{y}}\binom{\xi_{x} \xi_{y}}{\eta_{x} \eta_{y}} \sigma\binom{\xi_{x} \eta_{x}}{\xi_{y} \eta_{y}}\binom{u_{\xi}}{u_{\eta},} \\
\binom{-\psi_{\eta}}{\psi_{\xi}} & =\frac{W^{t} \sigma W}{\operatorname{det} W}\binom{u_{\xi}}{u_{\eta},}
\end{aligned}
$$

Lemma 2. Let (ξ, η) be a diffeomorphism as in the definition for an admissible data $\left(\mathbf{J}^{1}, \mathbf{J}^{2}, \mathbf{J}^{3}\right)$. Let's define a matrix field $S:=\frac{W \sigma W^{t}}{\operatorname{det} W}$, where $W:=\left(\begin{array}{ll}\xi_{x} & \xi_{y} \\ \eta_{x} & \eta_{y}\end{array}\right)$ is a jacobian matrix of the diffeomorphism. Then in this chart, we have another set of Ohm's laws,

$$
\begin{aligned}
& S\binom{u_{\xi}^{1}}{u_{\eta}^{1}}=\binom{-\psi_{\eta}^{1}}{\psi_{\xi}^{1}}=\binom{1}{0}, \\
& S\binom{u_{\xi}^{2}}{u_{\eta}^{2}}=\binom{-\psi_{\eta}^{2}}{\psi_{\xi}^{2}}=\binom{0}{1}, \\
& S\binom{u_{\xi}^{3}}{u_{\eta}^{3}}=\binom{-\psi_{\eta}^{3}}{\psi_{\xi}^{3}} .
\end{aligned}
$$

Lemma 3. For an admissible data $\left(\mathbf{J}^{1}, \mathbf{J}^{2}, \mathbf{J}^{3}\right)$ define S as in the Lemma 2 and define $R:=S^{-1}$. Then there is a scalar $\phi(\xi, \eta)$ such that $R=D^{\prime 2} \phi$ and ϕ is a solution of following 2nd order linear equation

$$
\begin{equation*}
\psi_{\eta \eta} \phi_{\xi \xi}-2 \psi_{\xi \eta} \phi_{\xi \eta}+\psi_{\xi \xi} \phi_{\eta \eta}=0 \tag{3}
\end{equation*}
$$

and the equation is hyperbolic.
Proof. By Lemma 2,

$$
S\left(\begin{array}{l}
u_{\xi}^{1} u_{\xi}^{2} \\
u_{\eta}^{1} \\
u_{\eta}^{2}
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad \text { or } \quad\left(\begin{array}{l}
u_{\xi}^{1} \\
u_{\xi}^{2} \\
u_{\eta}^{1} \\
u_{\eta}^{2}
\end{array}\right)=R .
$$

Since S and R is symmetric, $u_{\xi}^{2}=u_{\eta}^{1}$, i.e. the vector field $\left(u^{1}, u^{2}\right)$ is a gradient field. Therefore there is a ϕ such that $u^{1}=\phi_{\xi}$ and $u^{2}=\phi_{\eta}$ and hence $R=D^{\prime 2} \phi$.

Applying this R into third Ohm's law, we have

$$
\binom{u_{\xi}^{3}}{u_{\eta}^{3}}=D^{\prime 2} \phi\binom{-\psi_{\eta}}{\psi_{\xi}} .
$$

By applying $\nabla \times$ to above equation we have

$$
\begin{aligned}
0 & =\psi_{\eta \eta} \phi_{\xi \xi}-2 \psi_{\xi \eta} \phi_{\xi \eta}+\psi_{\xi \xi} \phi_{\eta \eta}+\psi_{\eta}\left(\phi_{\xi \xi \eta}-\phi_{\xi \eta \xi}\right)+\psi_{\xi}\left(-\phi_{\xi \eta \eta}+\phi \eta \eta \xi\right) \\
& =\psi_{\eta \eta} \phi_{\xi \xi}-2 \psi_{\xi \eta} \phi_{\xi \eta}+\psi_{\xi \xi} \phi_{\eta \eta} .
\end{aligned}
$$

This equation for ϕ is 2 nd order hyperbolic because $\operatorname{det} D^{\prime 2} \psi=\psi_{\xi \xi} \psi \eta \eta-$ $\psi_{\xi \eta}^{2}<0$ by assumption.

Theorem 2. Suppose the entries of the symmetric positive matrix field $\sigma(x)$ are in $C^{2, \alpha}(\bar{\Omega})$. Then there are explicit choices of three Neumann condition g_{1}, g_{2}, g_{3} on $\partial \Omega$ such that the current density $\mathbf{J}_{1}, \mathbf{J}_{2}, \mathbf{J}_{3}$ generated from the solution of equation @@@ with the boundary conditions are admissible.

Lemma 4. Let $\gamma(\ell):[0,4] \longrightarrow \partial \Omega$ be an embedding of $\partial \Omega$ and assume ℓ is an arc length. Define smooth functions $G_{1}(\ell), G_{2}(\ell)$ such that

$$
G_{1}=\left\{\begin{array}{ll}
0, & \epsilon \leq \ell \leq 1-\epsilon, \\
-\ell, & 1 \leq \ell \leq 2, \\
-1, & 2+\epsilon \leq \ell \leq 3-\epsilon, \\
\ell-4, & 3 \leq \ell \leq 4,
\end{array} \quad G_{2}= \begin{cases}\ell, & 0 \leq \ell \leq 1 \\
0, & 1+\epsilon \leq \ell \leq 2-\epsilon \\
3-\ell, & 2 \leq \ell \leq 3 \\
0, & 3+\epsilon \leq \ell \leq 4-\epsilon\end{cases}\right.
$$

G_{1} and G_{2} are monotone where it is not defined by above. Let ψ_{1} and ψ_{2} be

(a) $G 1(\ell)$

(b) $G 2(\ell)$
a solution of the equation @@@ with boundary condition G_{1} and G_{2} each. Let $B:=[0,1] \times[0,1]$. Then the map $W:=(\xi(x, y), \eta(x, y)):=\left(\psi_{2},-\psi_{1}\right):$ $\bar{\Omega} \longrightarrow \bar{B}$ is a bi-Lipchitz, and $\left.W\right|_{\Omega}: \Omega \longrightarrow B$ is a C^{1}-diffeomorphism.

Proof. First we claim that $\nabla \psi_{1} \neq 0, \nabla \psi_{2} \neq 0$ and $\nabla \psi_{1} \times \nabla \psi_{2} \neq 0$.
Lemma 5. Let $G_{3}=\xi^{2}-\eta^{2}$ on \bar{B} and ψ be a solution of the equation @@@ with boundary condition $\psi=G_{3}$ on ∂B. Then $D^{2} \psi \neq 0$ in \bar{B} and $\operatorname{det} D^{2} \psi<0$ in \bar{B}.

Lemma 6. Let ψ be a function defined in lemma @@@ and \mathbf{F}_{1} and \mathbf{F}_{2} be two vector fields associated with $D^{2} \psi$ as in lemma @@@. Then \mathbf{F}_{1} and \mathbf{F}_{2} are admissible in the sense of Def @@@.

Proof. a
4. Numerical reconstruction strategies : Network method and Potential method

