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Abstract. We consider a polyharmonic operator H = (−∆)l + V (x) in dimension
two with l ≥ 6, l being an integer, and a limit-periodic potential V (x). We prove
that the spectrum contains a semiaxis of absolutely continuous spectrum.

1. Introduction.

We study an operator
H = (−∆)l + V (x) (1)

in two dimensions, where l ≥ 6 is an integer and V (x) is a limit-periodic potential

V (x) =

∞∑

r=1

Vr(x). (2)

Here {Vr}∞r=1 is a family of periodic potentials with doubling periods and decreasing

L∞-norms, namely, Vr has orthogonal periods 2r−1~β1, 2r−1~β2 and

‖Vr‖∞ < Ĉexp(−2ηr) (3)

for some η > 2 + 64/(2l − 11). Without loss of generality, we assume that Ĉ = 1,
~β1 = (β1, 0), ~β2 = (0, β2) and

∫
Qr

Vr(x)dx = 0, Qr being the elementary cell of periods

corresponding to Vr(x).
The one-dimensional analog of (1), (2) with l = 1 is already thoroughly investigated.

It is proven in [1]–[7] that the spectrum of the operator H1u = −u′′ + V u is generically
a Cantor type set. It has positive Lebesgue measure [1, 6]. The spectrum is absolutely
continuous [1, 2], [5]–[9]. Generalized eigenfunctions can be represented in the form of
eikxu(x), u(x) being limit-periodic [5, 6, 7]. The case of a complex-valued potential
is studied in [10]. Integrated density of states is investigated in [11]–[14]. Properties
of eigenfunctions of discrete multidimensional limit-periodic Schrödinger operators are
studied in [15]. As to the continuum multidimensional case, it is proved [14] that the
integrated density of states for (1) is the limit of densities of states for periodic operators.
A particular case of a periodic operator (Vr = 0 when r ≥ 2) for dimensions d ≥ 2 and
different l is already studied well, e.g., see [16] – [31]. Here we prove that the spectrum
of (1), (2) contains a semiaxis of absolutely continuous spectrum. This paper is based
on [32]. We proved the following results for the case d = 2, l ≥ 6 in [32].

(1) The spectrum of the operator (1), (2) contains a semiaxis [λ∗(V ),∞). A proof of
the analogous result by different means can be found in [33]. The more general
case 8l > d+3, d 6= 1(mod4), is considered in [33], however, under the additional
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restriction on the potential: the lattices of periods of all periodic potentials Vr

have to contain a nonzero vector ~γ in common, i.e., V (x) is periodic in one
direction.

(2) There are generalized eigenfunctions Ψ∞(~k, ~x), corresponding to the semiaxis,

which are close to plane waves: for every ~k in a subset G∞ of R
2, there is a

solution Ψ∞(~k, ~x) of the equation HΨ∞ = λ∞(~k)Ψ∞, which can be described
by the formula

Ψ∞(~k, ~x) = ei〈~k,~x〉
(
1 + u∞(~k, ~x)

)
, (4)

‖u∞‖L∞(R2) =
|~k|→∞

O
(
|~k|−γ1

)
, γ1 > 0, (5)

where u∞(~k, ~x) is a limit-periodic function

u∞(~k, ~x) =

∞∑

r=1

ur(~k, ~x), (6)

ur(~k, ~x) being periodic with periods 2r−1~β1, 2r−1~β2. The eigenvalue λ∞(~k)

corresponding to Ψ∞(~k, ~x) is close to |~k|2l:

λ∞(~k) =
|~k|→∞

|~k|2l + O
(
|~k|−γ2

)
, γ2 > 0. (7)

The “non-resonance” set G∞ of vectors ~k, for which (4) – (7) hold, is a Cantor
type set G∞ =

⋂∞
n=1 Gn, where {Gn}∞n=1 is a decreasing sequence of sets in R

2.
Each Gn has a finite number of holes in each bounded region. More and more
holes appear as n increases; however, holes added at each step are of smaller and
smaller size. The set G∞ satisfies the estimate

|G∞ ∩ BR| =
R→∞

|BR|
(
1 + O(R−γ3)

)
, γ3 > 0, (8)

where BR is the disk of radius R centered at the origin and | · | is Lebesgue
measure in R

2.
(3) The set D∞(λ), defined as a level (isoenergetic) set for λ∞(~k),

D∞(λ) =
{
~k ∈ G∞ : λ∞(~k) = λ

}
,

is shown to be a slightly distorted circle with an infinite number of holes. It can
be described by the formula

D∞(λ) =
{
~k : ~k = κ∞(λ, ~ν)~ν, ~ν ∈ B∞(λ)

}
, (9)

where B∞(λ) is a subset of the unit circle S1. The set B∞(λ) can be interpreted
as the set of possible directions of propagation for almost plane waves (4). The
set B∞(λ) has a Cantor type structure and an asymptotically full measure on
S1 as λ → ∞:

L
(
B∞(λ)

)
=

λ→∞
2π + O

(
λ−γ3/2l

)
, (10)

here and below L(·) is a length of a curve. The value κ∞(λ, ~ν) in (9) is the
“radius” of D∞(λ) in a direction ~ν. The function κ∞(λ, ~ν)−λ1/2l describes the
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deviation of D∞(λ) from the perfect circle of the radius λ1/2l. It is shown that
the deviation is small

κ∞(λ, ~ν) =
λ→∞

λ1/2l + O
(
λ−γ4

)
, γ4 > 0. (11)

The set G∞ is the union of isoenergetic curves D∞(λ) over all sufficiently large
λ:

G∞ =
⋃

λ>λ∗(V )

D∞(λ). (12)

In this paper, we use the results of [32] to prove absolute continuity of the branch of

the spectrum (the semiaxis) corresponding to Ψ∞(~k, ~x).
The following is a brief review of the technique used in [32], where we develop a mod-

ification of the Kolmogorov-Arnold-Moser (KAM) method to prove the results listed
above. The paper [32] is inspired by [34, 35, 36], where the method is used for peri-
odic problems. In [34], KAM method is applied to classical Hamiltonian systems. In
[35, 36], the technique developed in [34] is applied for semiclassical approximation for
multidimensional periodic Schrödinger operators at high energies.

In [32], we consider a sequence of operators

H0 = (−∆)l, H(n) = H0 +

Mn∑

r=1

Vr, n ≥ 1, Mn → ∞ as n → ∞. (13)

Obviously, ‖H − H(n)‖ → 0 as n → ∞ and H(n) = H(n−1) + Wn, where Wn =∑Mn

r=Mn−1+1 Vr. We treat each operator H(n), n ≥ 1, as a perturbation of the previous

operator H(n−1), H(0) = H0. Each operator H(n) is periodic; however, the periods go
to infinity as n → ∞. We show that there exists λ∗ = λ∗(V ) such that the semiaxis
[λ∗,∞) is contained in the spectra of all operators H(n). For every operator H(n), there
is a set of eigenfunctions (corresponding to the semiaxis) close to plane waves: for every
~k in an extensive open subset Gn of R

2, there is a solution Ψn(~k, ~x) of the differential
equation H(n)Ψn = λ(n)Ψn, which can be represented by the formula

Ψn(~k, ~x) = ei〈~k,~x〉
(
1 + ũn(~k, ~x)

)
, ‖ũn‖L∞(R2) =

|~k|→∞
O(|~k|−γ1), γ1 > 0, (14)

where ũn(~k, ~x) has periods 2Mn−1~β1, 2
Mn−1~β2.

1 The corresponding eigenvalue λ(n)(~k)

is close to |~k|2l:

λ(n)(~k) =
|~k|→∞

|~k|2l + O
(
|~k|−γ2

)
, γ2 > 0. (15)

The asymptotic is differentiable in ~k:

∇λ(n)(~k) =
|~k|→∞

2l|~k|2l−2~k + O
(
|~k|−γ′

2

)
, γ′

2 > 0. (16)

The non-resonance set Gn is shown to be extensive in R
2:

|Gn ∩BR| =
R→∞

|BR|
(
1 + O(R−γ3)

)
. (17)

Estimates (14) – (17) are uniform in n. The set Dn(λ) is defined as the level (isoenergetic)

set for non-resonant eigenvalue λ(n)(~k):

Dn(λ) =
{
~k ∈ Gn : λ(n)(~k) = λ

}
. (18)

1ũn(~k, ~x) =
P

Mn
r=Mn−1+1

ur(~k, ~x), ur(~k, ~x) being in (6).
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Figure 1. Distorted cir-
cle with holes, D1(λ)

Figure 2. Distorted cir-
cle with holes, D2(λ)

This set is shown to be a slightly distorted circle with a finite number of holes (see Figs.
1, 2), the set D1(λ) being strictly inside the circle of the radius λ1/2l for sufficiently large
λ. The set Dn(λ) can be described by the formula

Dn(λ) =
{
~k : ~k = κn(λ, ~ν)~ν, ~ν ∈ Bn(λ)

}
, (19)

where Bn(λ) is a subset of the unit circle S1. The set Bn(λ) can be interpreted as
the set of possible directions of propagation for almost plane waves (14). It has an
asymptotically full measure on S1 as λ → ∞:

L
(
Bn(λ)

)
=

λ→∞
2π + O

(
λ−γ3/2l

)
. (20)

The set Bn(λ) has only a finite number of holes; however, their number grows with n.
More and more holes of a smaller and smaller size are removed at each step. The value
κn(λ, ~ν) − λ1/2l gives the deviation of Dn(λ) from the circle of the radius λ1/2l in the
direction ~ν. It is shown that the deviation is asymptotically small:

κn(λ, ~ν) = λ1/2l + O
(
λ−γ4

)
,

∂κn(λ, ~ν)

∂ϕ
= O

(
λ−γ5

)
, γ4, γ5 > 0, (21)

ϕ being an angular variable,

~ν = (cosϕ, sin ϕ), ϕ ∈ [0, 2π).

Estimates (20), (21) are uniform in n. The following relation holds:

Gn =
⋃

λ>λ∗(V )

Dn(λ). (22)

At each step, more and more points are excluded from the non-resonance sets Gn ;
thus, {Gn}∞n=1 is a decreasing sequence of sets. The set G∞ is proven to be the limit set:
G∞ =

⋂∞
n=1 Gn. It has an infinite number of holes, but nevertheless satisfies the relation

(8). For every ~k ∈ G∞ and every n, there is a generalized eigenfunction of H(n) of the

type (14). It is shown that the sequence Ψn(~k, ~x) has a limit in L∞(R2) when ~k ∈ G∞.

The function Ψ∞(~k, ~x) = limn→∞ Ψn(~k, ~x) is a generalized eigenfunction of H . It can

be written in the form (4) – (6). Naturally, the corresponding eigenvalue λ∞(~k) is the

limit of λ(n)(~k) as n → ∞.
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It is shown that {Bn(λ)}∞n=1 is a decreasing sequence of sets at each step more and
more directions being excluded. We consider the limit B∞(λ) of Bn(λ),

B∞(λ) =

∞⋂

n=1

Bn(λ).

This set has a Cantor type structure on the unit circle. It is shown that B∞(λ) has
asymptotically full measure on the unit circle (see (10)). We prove that the sequence
κn(λ, ~ν), n = 1, 2, ..., describing the isoenergetic curves Dn(λ), converges rapidly (super
exponentially) as n → ∞. Hence, D∞(λ) can be described as the limit of Dn(λ) in the
sense of (9), where κ∞(λ, ~ν) = limn→∞ κn(λ, ~ν) for every ~ν ∈ B∞(λ). It is shown that

the derivatives ∂κn(λ,~ν)
∂ϕ have a limit as n → ∞ for every ~ν ∈ B∞(λ). We denote this

limit by ∂κ∞(λ,~ν)
∂ϕ . Using (21), we prove that

∂κ∞(λ, ~ν)

∂ϕ
= O

(
λ−γ5

)
. (23)

Thus, the limit curve D∞(λ) has a tangent vector in spite of its Cantor type structure,
the tangent vector being the limit of corresponding tangent vectors for Dn(λ) as n → ∞.
The curve D∞(λ) looks like a slightly distorted circle with infinite number of holes.

The main technical difficulty overcome in [32] is the construction of non-resonance
sets Bn(λ) for every fixed sufficiently large λ, λ > λ∗(V ), where λ∗ is the same for all n.
The set Bn(λ) is obtained by deleting a “resonant” part from Bn−1(λ). The definition of
Bn−1(λ)\Bn(λ) includes Bloch eigenvalues of H(n−1). To describe Bn−1(λ)\Bn(λ), one
has to use not only non-resonant eigenvalues of type (7), but also resonant eigenvalues,
for which no suitable formulas are known. The absence of formulas causes difficulties
in estimating the size of Bn−1(λ) \ Bn(λ). To deal with this problem we use angular
variable ϕ. We show that the resonant set Bn−1(λ) \ Bn(λ) can be described as the zero
set of a determinant

det(I + An−1(ϕ)), (24)

An−1(ϕ) being a trace type operator,

I + An−1(ϕ) =
(
H(n−1)

(
~κn−1(ϕ) +~b

)
− (λ + ǫ)I

)(
H0

(
~κn−1(ϕ) +~b

)
+ λI

)−1

,

where ~κn−1(ϕ) is a vector-valued function describing Dn−1(λ) : ~κn−1(ϕ) = κn−1(λ, ~ν)~ν.
To obtain Bn−1(λ) \ Bn(λ) we take all the zeros of (24) for all values of ǫ in a small

interval and vectors ~b in a finite set, ~b 6= 0. To estimate the size of Bn−1(λ) \ Bn(λ)
we extend our considerations to a complex neighborhood Φ0 of [0, 2π). We show that
the determinants are analytic functions of ϕ in Φ0, and, thus, reduce the problem of
estimating the size of the resonance set to a problem in complex analysis. We use
theorems for analytic functions to count the zeros of the determinants and to investigate
how far zeros move when ǫ changes. This enables us to estimate the size of the zero
set of the determinants and hence the size of the non-resonance set Φn ⊂ Φ0, which is
defined as a non-zero set for the determinants. Proving that the non-resonance set Φn

is sufficiently large, we obtain estimates (17) for Gn and (20) for Bn, the set Bn being
the intersecton of Φn with the real line. To obtain Φn we delete from Φ0 more and more
holes of smaller and smaller radii at each step. Thus, the non-resonance set Φn ⊂ Φ0

has the structure of Swiss Cheese. We call deleting the resonance set from Φ0 at each
step of the recurrent procedure “Swiss Cheese Method”. The essential difference of our
method from those applied earlier in similar situations (see, e.g., [34, 35, 36]) is that
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we construct a non-resonance set not only in the whole space of a parameter (~k ∈ R
2

here), but also on the isoenergetic curves Dn(λ) in the space of parameter when λ is
sufficiently large. Estimates for the size of non-resonant sets on a curve require more
subtle technical considerations than those sufficient for description of a non-resonant set
in the whole space of the parameter.

In the next section, using information obtained in [32], we prove absolute continuity

of the branch of the spectrum [λ∗(V ),∞) corresponding to the functions Ψ∞(~k, ~x), ~k ∈
G∞. Absolute continuity, roughly speaking, follows from the fact that the area between
isoenergetic curves D∞(λ) and D∞(λ + ǫ) (integrated density of states) is proportional
to ǫ.

Note that generalization of results from the case l ≥ 6, l being an integer, to the case
of rational l satisfying the same inequality is relatively simple; it requires just slightly
more careful technical considerations. The restriction l ≥ 6 is also technical, though it
is more difficult to lift. The condition l ≥ 6 is needed only for the first two steps of
the recurrent procedure in [32]. The requirement for super-exponential decay of ‖Vr‖
as r → ∞ is more essential than l ≥ 6 since it is needed to ensure convergence of the
recurrent procedure. It is not essential that potentials Vr have doubling periods; periods

of the type qr−1~β1, qr−1~β2, q ∈ N, can be treated in the same way.
The periodic case (Vr = 0, when r ≥ 2) is already carefully investigated for dimen-

sions d ≥ 2 and different l [16]–[31]. For briefness, we mention here only results for
dimension two. Absolute continuity of the whole spectrum is proven in [16] for l = 1,
however the proof can be extended for higher integers l. Bethe-Sommerfeld conjecture
is first proved for d = 2, l = 1 in [17], [18] and for l ≥ 1 in [21]. The perturbation
formulas for eigenvalues are constructed in [20]. The formulas for eigenfunctions and the
corresponding isoenergetic surfaces are obtained in [21].

2. Proof of Absolute Continuity of the Spectrum

2.1. Projections En(G′
n), G′

n ⊂ Gn. Let us consider the open sets Gn given by (22).
There is a family of Bloch eigenfunctions Ψn(~κ, x), ~κ ∈ Gn,2 of the operator H(n), which
are described by the perturbation formulas (14). Let G′

n be a Lebesgue measurable subset
of Gn. We consider the spectral projection En (G′

n) of H(n), corresponding to functions
Ψn(~κ, x), ~κ ∈ G′

n. By [38], En (G′
n) : L2(R

2) → L2(R
2) can be presented by the formula:

En (G′
n) F =

1

4π2

∫

G′

n

(
F, Ψn(~κ)

)
Ψn(~κ)d~κ (25)

for any F ∈ C∞
0 (R2), here and below

(
·, ·
)

is the canonical scalar product in L2(R
2),

i.e.,
(
F, Ψn(~κ)

)
=

∫

R2

F (x)Ψn(~κ, x)dx.

The above formula can be rewritten in the form:

En (G′
n) = Sn (G′

n)Tn (G′
n) , (26)

Tn : C∞
0 (R2) → L2 (G′

n) , Sn : L∞ (G′
n) → L2(R

2),

TnF =
1

2π

(
F, Ψn(~κ)

)
for any F ∈ C∞

0 (R2), (27)

2We use ~κ in this section instead of ~k (see (4) and further) to be consistent with notations in [32].
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TnF being in L∞ (G′
n), and,

Snf =
1

2π

∫

G′

n

f(~κ)Ψn(~κ, x)d~κ for any f ∈ L∞ (G′
n). (28)

By [38],

‖TnF‖L2(G′

n) ≤ ‖F‖L2(R2)

on C∞
0 (R2) and

‖Snf‖L2(R2) ≤ ‖f‖L2(G′

n)

on L∞(G′
n). Hence Tn, Sn can be extended by continuity from C∞

0 (R2), L∞ (G′
n) to

L2(R
2) and L2 (G′

n), respectively. Thus the operator En (G′
n) is described by (26) in the

whole space L2(R
2).

Let us introduce new coordinates (λn, ϕ) in Gn: λn = λ(n)(~κ), (cosϕ, sin ϕ) = ~κ
|~κ| .

Lemma 1. Every point ~κ in Gn is represented by a unique pair (λn, ϕ), λn > λ∗,
ϕ ∈ [0, 2π),

~κ(λn, ϕ) = κn(λn, ~ν)~ν, ~ν = (cosϕ, sin ϕ), (29)

κn(λn, ~ν) being the “radius” of the isoenergetic curve Dn(λn) in the direction ~ν.

Proof. Obviously, for every ~κ in Gn, there exists a pair (λn, ϕ) such that λn = λ(n)(~κ)
and that (cosϕ, sin ϕ) = ~κ

|~κ| . For uniqueness, suppose there are two points ~κ1, ~κ2 cor-

responding to (λn, ϕ), i.e., λ(n)(~κ1) = λ(n)(~κ2) = λn and ~κ1

|~κ1|
= ~κ2

|~κ2|
= ~ν. The former

means that both ~κ1 and ~κ2 belong to Dn(λn). The curve Dn(λn) is parameterized by
ϕ, therefore, ~κ1 = ~κ2. Formula (29) follows from the relation λ(n)(~κ) = λn, which is
the definition of the curve Dn(λn), and formula (19). �

For any function f(~κ) integrable on Gn, we use the new coordinates and write
∫

Gn

f(~κ)d~κ =

∫

R2

χ (Gn, ~κ) f(~κ)d~κ

=

∫ ∞

λ∗

∫ 2π

0

χ
(
Gn, ~κ(λn, ϕ)

)
f
(
~κ(λn, ϕ)

)κn(λn, ~ν)
∂λn

∂κ

dϕ dλn,

where χ (Gn, ~κ) is the characteristic function on Gn, ~κ(λn, ϕ) is given by (29) and ∂λn

∂κ
=(

∇λ(n)(~κ), ~ν
) ∣∣

~κ=~κn(λn,~ν). Let

Gn,λ = {~κ ∈ Gn : λ(n)(~κ) < λ}. (30)

This set is Lebesgue measurable, since Gn is open and λ(n)(~κ) is continuous on Gn.

Lemma 2. |Gn,λ+ε \ Gn,λ| ≤ 2πλ−(l−1)/lε when 0 ≤ ε ≤ 1.

Proof. Considering that Gn,λ+ε \ Gn,λ = {~κ ∈ Gn : λ ≤ λn(~κ) < λ + ǫ}, we get

|Gn,λ+ε \ Gn,λ| =

∫

Gn

χ (Gn,λ+ε \ Gn,λ, ~κ) d~κ =

∫ λ+ε

λ

∫

Θn(λn)

κn(λn, ~ν)
∂λn

∂κ

dϕdλn,

where Θn(λn) ⊂ [0, 2π) is the set of ϕ corresponding to Bn(λn). Using perturbation
formulas (16), (21) we easily arrive at the required inequality. �

By (25), En (Gn,λ+ε) − En (Gn,λ) = En (Gn,λ+ε \ Gn,λ). Let us obtain an estimate for
this projection.
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Lemma 3. For any F ∈ C∞
0 (R2) and 0 ≤ ε ≤ 1,

∥∥(En(Gn,λ+ε) − En(Gn,λ)
)
F
∥∥2

L2(R2)
≤ C(F )λ−(l−1)/lǫ, (31)

where C(F ) is uniform with respect to n and λ.

Proof. Considering formula (25), we easily see that

((
En(Gn,λ+ε) − En(Gn,λ)

)
F, F

)
=

∫

Gn,λ+ε\Gn,λ

∣∣(F, Ψn(~κ)
)∣∣2 d~κ.

Using estimate (14) uniform in n for every cell of periods covering the support of F and
summing up over such cells, we readily obtain

∣∣(F, Ψn(~κ)
)∣∣2 < C(F )

for all n and ~κ ∈ Gn,λ+ε \ Gn,λ. Hence, by Lemma 2,
(
(En(Gn,λ+ε) − En(Gn,λ)) F, F

)
≤ C(F ) |Gn,λ+ε \ Gn,λ| ≤ C(F )λ−(l−1)/lε.

Estimate (31) follows since En(Gn,λ+ε) − En(Gn,λ) is a projection. �

2.2. Sets G∞ and G∞,λ. The sets G∞, Gn are given by (12), (22). It is proven in [32]
(Theorem 6.10) that

Gn+1 ⊂ Gn. (32)

G∞ =

∞⋂

n=1

Gn. (33)

Therefore, the perturbation formulas for λ(n)(~κ) and Ψn(~κ) hold in G∞ for all n. More-
over, coordinates (λn, ϕ) can be used in G∞ for every n.

The following formulas, proven in [32], show that λ(n)(~κ) and Ψn(~κ) approach λ∞(~κ)
and Ψ∞(~κ) super-exponentially fast when ~κ ∈ G∞. Indeed, let ~κ belongs to a ring

Rk,2k =
{
~κ ∈ R

2 : k < |~κ| < 2k
}

(34)

for some k : k2l > λ∗. Then,∣∣∣λ∞(~κ) − λ(n)(~κ)
∣∣∣ < 24ǫ4n, n ≥ 1, (35)

‖Ψ∞ − Ψn‖L∞(R2) < Clk2lǫ3n|Qn+1|
1/2, n ≥ 1, (36)

where

ǫn = exp

(
−

1

4
kηsn

)
, sn = 2sn−1, s1 = (2l − 11)/32 (37)

and Qn is the elementary cell of periods of the operator Hn. It is formed by the periods
Ñnβ1, Ñnβ2 of Wn(x) and Ñn ≈ ksn , i.e.,

Qn = [0, Ñnβ1) × [0, Ñnβ1), |Qn| < Cβ1β2k
2sn . (38)

Let
G∞,λ = {~κ ∈ G∞ : λ∞(~κ) < λ} . (39)

The function λ∞(~κ) is a Lebesgue measurable function, since it is a limit of the sequence
of measurable functions. Hence, the set G∞,λ is measurable.

Lemma 4. The measure of the symmetric difference of two sets G∞,λ and Gn,λ converges
to zero as n → ∞ uniformly in λ in every bounded interval:

lim
n→∞

|G∞,λ∆Gn,λ| = 0,

where A∆B = (A \ B) ∪ (B \ A).
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Proof. Using the relation G∞ ⊂ Gn and estimate (35), we readily check that G∞,λ ⊂
Gn,λ+δn

, δn = 24ǫ4n, where ǫn is given by (37) with k = λ1/2l. Therefore,

G∞,λ \ Gn,λ ⊂ Gn,λ+δn
\ Gn,λ.

Similarly, G∞,λ ⊃ Gn,λ−δn
∩ G∞. Hence,

Gn,λ \ G∞,λ ⊂ Gn,λ ∩
(
Gn,λ−δn

∩ G∞

)c
⊂ (Gn,λ \ Gn,λ−δn

) ∪ (Gn,λ \ G∞) .

Combining the two, we get

G∞,λ∆Gn,λ ⊂ (Gn,λ+δn
\ Gn,λ−δn

) ∪ (Gn,λ \ G∞) ,

hence,

|G∞,λ∆Gn,λ| ≤ |Gn,λ−δn
\ Gn,λ+δn

| + |Gn,λ \ G∞| .

Let us consider the first term of the right hand side. Using Lemma 2 with ε = 2δn, we
obtain |Gn,λ−δn

\ Gn,λ+δn
| < 96πλ−(l−1)/lǫ4n. Using (37) for ǫn, we conclude easily that

the first term goes to zero uniformly in λ. Obviously, Gn,λ is bounded uniformly in n
when n → ∞ and λ in every bounded interval. By (32) and (33) the second term goes
to zero uniformly in λ in every bounded interval. �

2.3. Spectral Projections E(G∞,λ). In this section, we show that spectral projections
En(G∞,λ) have a strong limit E∞(G∞,λ) in L2(R

2) as n tends to infinity. The operator
E∞(G∞,λ) is a spectral projection of H . It can be represented in the form E∞(G∞,λ) =
S∞T∞, where S∞ and T∞ are strong limits of Sn(G∞,λ) and Tn(G∞,λ), respectively. For
any F ∈ C∞

0 (R2), we show:

E∞ (G∞,λ)F =
1

4π2

∫

G∞,λ

(
F, Ψ∞(~κ)

)
Ψ∞(~κ)d~κ, (40)

HE∞ (G∞,λ)F =
1

4π2

∫

G∞,λ

λ∞(~κ)
(
F, Ψ∞(~κ)

)
Ψ∞(~κ)d~κ. (41)

Using properties of E∞ (G∞,λ), we prove absolute continuity of the branch of the spec-
trum corresponding to functions Ψ∞(~κ).

Now we consider the sequence of operators Tn(G∞,λ) which are given by (27) and act
from L2(R

2) to L2(G∞,λ). We prove that the sequence has a strong limit and describe
its properties.

Lemma 5. The sequence Tn(G∞,λ) has a strong limit T∞(G∞,λ). The operator T∞(G∞,λ)
satisfies ‖T∞‖ ≤ 1 and can be described by the formula T∞F = 1

2π

(
F, Ψ∞(~κ)

)
for any

F ∈ C∞
0 (R2). The convergence of Tn(G∞,λ)F to T∞(G∞,λ)F is uniform in λ for every

F ∈ L2(R
2).

Proof. Let F ∈ C∞
0 (R2). We consider T∞F = 1

2π

(
F, Ψ∞(~κ)

)
. It follows from (36) and

(27) that
∣∣(T∞ − Tn)F (~κ)

∣∣ < C(F )gn(~κ), gn(~κ) = lk2lǫ3n|Qn+1|
1/2, k = |~κ|.

It is easy to see from (37), (38) that gn(~κ) ∈ L2(G∞) for all n and gn(~κ) tends to zero in
L2(G∞) as n → ∞. Therefore, gn(~κ) tends to zero in L2(G∞,λ) uniformly in λ. Hence,∥∥(T∞ − Tn)F

∥∥
L2(G∞,λ)

tends to zero uniformly in λ for every F ∈ C∞
0 (R2) as n → ∞.

Considering ‖Tn‖ ≤ 1, we obtain that TnF has a limit for every F ∈ L2(R
2) uniformly

in λ. The estimate ‖T∞‖ ≤ 1 is now obvious. �
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Now we consider the sequence of operators Sn(G∞,λ) which are given by (28) with
G′

n = G∞,λ:

Sn(G∞,λ) : L2(G∞,λ) → L2(R
2).

We prove that the sequence has a strong limit and describe its properties.

Lemma 6. The sequence of operators Sn(G∞,λ) has a strong limit S∞(G∞,λ). The
operator S∞(G∞,λ) satisfies ‖S∞‖ ≤ 1 and can be described by the formula

(S∞f)(x) =
1

2π

∫

G∞,λ

f(~κ)Ψ∞(~κ, x)d~κ (42)

for any f ∈ L∞ (G∞,λ). The convergence of Sn(G∞,λ)f to S∞(G∞,λ)f is uniform in λ
for every f ∈ L2 (G∞).

Proof. We start with proving that Sn(G∞,λ)f is a Cauchy sequence in L2(R
2) for every

f ∈ L∞ (G∞,λ). Since Qn is the cell of periods of the operator H(n), see (38), the
function Ψn(~κ, x) is quasiperiodic in Qn. It can be represented as a combination of
plane waves:

Ψn(~κ, x) =
1

2π

∑

r∈Z2

c(n)
r (~κ) exp i〈~κ + ~pr(0)/Ñn, x〉, (43)

where c
(n)
r (~κ) are Fourier coefficients and ~pr(0) = (2πr1

β1
, 2πr2

β2
). The Fourier transform

of Ψ̂n is a combination of δ-functions:

Ψ̂n(~κ, ~ξ) =
∑

r∈Z2

c(n)
r (~κ)δ

(
~ξ + ~κ + ~pr(0)/Ñn

)
.

From this, we compute easily the Fourier transform of Snf

(Ŝnf)(~ξ) =
1

2π

∑

r∈Z2

c(n)
r

(
−~ξ − ~pr(0)/Ñn

)
f
(
−~ξ − ~pr(0)/Ñn

)
χ
(
G∞,λ,−~ξ − ~pr(0)/Ñn

)
,

where χ(G∞,λ, ·) is the characteristic function on G∞,λ. Since G∞,λ is bounded, the

series contains only a finite number of non-zero terms for every ~ξ. By Parseval’s identity,
triangle inequality and a parallel shift of the variable,

‖Snf‖L2(R2) = ‖Ŝnf‖L2(R2) ≤

1

2π

∑

r∈Z2

∥∥∥c(n)
r

(
−~ξ − ~pr(0)/Ñn

)
f
(
−~ξ − ~pr(0)/Ñn

)
χ
(
G∞,λ,−~ξ − ~pr(0)/Ñn

)∥∥∥
L2(R2)

=

1

2π

∑

r∈Z2

‖c(n)
r (~κ)f(~κ)‖L2(G∞,λ).

Assume first that the support of f belongs to a ring Rk,2k in (34) for some k such that
k2l > λ∗(V ). Then, the last inequality yields:

‖Snf‖L2(R2) ≤
1

2π
‖f‖L∞(Rk,2k)

∑

r∈Z2

‖c(n)
r ‖L2(Rk,2k) ≤

1

2π
‖f‖L∞(Rk,2k)

(∑

r∈Z2

p4l
r (0)‖c(n)

r ‖2
L2(Rk,2k)

)1/2(∑

r∈Z2

p−4l
r (0)

)1/2

,
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where we used Cauchy-Schwarz inequality. By (43), Fourier coefficients c
(n)
r (~κ) can be

estimated as follows:
∑

r∈Z2

p4l
r (0)|c(n)

r (~κ)|2 ≤ 4π2‖Ψn(~κ, ·) exp (−i〈~κ, ·〉) ‖2
W 2l

2
(Qn)|Qn|

−1Ñ4l
n ≤

8π2|~κ|4l‖Ψn(~κ, ·)‖2
W 2l

2
(Qn)|Qn|

−1Ñ4l
n .

Integrating the last inequality over Rk,2k, we arrive at
∑

r∈Z2

p4l
r (0)‖c(n)

r ‖2
L2(Rk,2k) ≤ ck4l+2|Qn|

−1Ñ4l
n sup

~κ∈Rk,2k

‖Ψn(~κ, ·)‖2
W 2l

2
(Qn).

Considering that
∑

r p−4l
r (0) < c, we obtain

‖Snf‖L2(R2) < ck2l+1‖f‖L∞(Rk,2k)|Qn|
−1/2Ñ2l

n sup
~κ∈Rk,2k

‖Ψn(~κ, ·)‖W 2l
2

(Qn).

Similarly,

‖(Sn+1 − Sn)f‖L2(R2)

< ck2l+1‖f‖L∞(Rk,2k)|Qn+1|
−1/2Ñ2l

n sup
~κ∈Rk,2k

‖
(
Ψn+1(~κ, ·) − Ψn(~κ, ·)

)
‖W 2l

2
(Qn+1).

It is proven in [32] (Section 6.2) that

‖Ψn+1(~κ, ·) − Ψn(~κ, ·)‖W 2l
2

(Qn+1) < ck2lǫ3n|Qn+1|
1/2, n ≥ 1, when ~κ ∈ Rk,2k. (44)

Using the last estimate, we obtain

‖(Sn − Sn+1)f‖L2(R2) ≤ ck4l+1‖f‖L∞(Rk,2k)Ñ
2l
n ǫ3n. (45)

Considering that ǫn decays super-exponentially with n (see (37)) and the estimate Ñn ≈
ksn , we conclude that Snf is a Cauchy sequence in L2(R

2) for every f ∈ L∞ (Rk,2k).
If f ∈ L∞(G∞,λ), then we can express it as a sum of functions fk such that fk has

the support in Rk,2k and ‖f‖L∞(Rk,2k) ≤ ‖f‖L∞(G∞,λ). Summing up estimates (45) over

all k, we easily see that Snf is a Cauchy sequence in L2(R
2). We denote the limit of

Sn(G∞,λ)f by S∞(G∞,λ)f .
We see from formula (28) and estimate (36) that

lim
n→∞

(
Sn(G∞,λ)f

)
(x) =

1

2π

∫

G∞,λ

f(~κ)Ψ∞(~κ, x)d~κ,

for all x ∈ R
2 when f ∈ L∞(G∞,λ). Hence, (42) holds.

Since ‖Sn‖ ≤ 1, the limit S∞(G∞,λ)f exists for all f ∈ L2(G∞,λ). Note that conver-
gence is uniform in λ for every f ∈ L2(G∞). It is obvious now that ‖S∞‖ ≤ 1. �

Lemma 7. Spectral projections En(G∞,λ) have a strong limit E∞(G∞,λ) in L2(R
2), the

convergence being uniform in λ for every element. For any F ∈ C∞
0 (R2) the operator

E∞(G∞,λ) is a projection given by (40) and formula (41) holds.

Proof. By (26), En = SnTn. By lemmas 5 and 6 both Sn and Tn have strong limits S∞,
T∞ and ‖Sn‖ ≤ 1, ‖Tn‖ ≤ 1. It follows easily that En has the strong limit E∞ = S∞T∞.
Since En is a sequence of projections, its strong limit satisfies the relations: E∞ = E∗

∞,
E2

∞ = E∞. Hence E∞ is a projection, see e.g. [37]. Using last two lemmas and
considering that T∞(G∞,λ)F ∈ L∞(G∞,λ) for any F ∈ C∞

0 (R2), we arrive at (40).

Applying differential equation HΨ∞ = λ∞(~k)Ψ∞, we obtain (41). It remains to prove
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that convergence of EnF is uniform in λ for every F ∈ L2(R
2). First, let F ∈ C∞

0 (R2).
By the triangle inequality,

‖(E∞ − En)F‖ ≤ ‖(S∞ − Sn)T∞F‖ + ‖Sn(T∞ − Tn)F‖.

Since TnF converges to T∞F uniformly in λ and ‖Sn‖ ≤ 1, the second term goes to
zero uniformly in λ. We see easily from (40) that T∞F ∈ L∞(G∞). Then, by Lemma 6,
SnT∞F converges to E∞(G∞,λ)F uniformly in λ. This mean that En(G∞,λ)F converges
to E∞(G∞,λ)F uniformly in λ for F ∈ C∞

0 (R2). Using ‖En‖ = 1, we obtain that uniform
convergence holds for all F ∈ L2(R

2).
�

Lemma 8. There is a strong limit E∞(G∞) of the projections E∞(G∞,λ) as λ goes to
infinity.

Corollary 9. The operator E∞(G∞) is a projection.

Proof. Considering that limn→∞ En(G∞,λ) = E∞(G∞,λ) and En(G∞,λ) is a monotone
in λ, we conclude that E∞(G∞,λ) is monotone too. It is well-known that a monotone
sequence of projections has a strong limit. �

Lemma 10. Projections E∞(G∞,λ), λ ∈ R, and E∞(G∞) reduce the operator H.

Proof. Let us show E∞(G∞,λ) reduces H , i.e., E∞(G∞,λ)Dom(H) ⊂ Dom(H) and
E∞(G∞,λ)H = HE∞(G∞,λ) on Dom(H) (e.g., see Theorem 40.2 in [39]). For any

F, G ∈ Dom(H) = Dom(H(n)),
(
F, E∞(G∞,λ)HG

)
=
(
E∞(G∞,λ)F, HG

)
= lim

n→∞

(
En(G∞,λ)F, H(n)G

)

= lim
n→∞

(
H(n)En(G∞,λ)F, G

)
= lim

n→∞

(
En(G∞,λ)H(n)F, G

)

= lim
n→∞

(
H(n)F, En(G∞,λ)G

)
=
(
HF, E∞(G∞,λ)G

)
=
(
E∞(G∞,λ)HF, G

)
.

Hence, E∞(G∞,λ)H is symmetric. Since E∞(G∞,λ) is bounded, (E∞(G∞,λ)H)∗ =
HE∞(G∞,λ) (e.g., see §115 in [37]). Therefore, E∞(G∞,λ)H ⊂ HE∞(G∞,λ) which
means that for every F ∈ Dom(H), E∞(G∞,λ)F ∈ Dom(H) and E∞(G∞,λ)HF =
HE∞(G∞,λ)F . Thus, E∞(G∞,λ) reduces H .

Now we show that E∞(G∞) reduces H . Noting that E∞(G∞) is the strong limit of
E∞(G∞,λ) as λ → ∞, for any F, G ∈ Dom(H),
(
F, E∞(G∞)HG

)
= lim

λ→∞

(
F, E∞(G∞,λ)HG

)
= lim

λ→∞

(
HE∞(G∞,λ)F, G

)

= lim
λ→∞

(
E∞(G∞,λ)HF, G

)
=
(
E∞(G∞)HF, G

)
,

i.e., E∞(G∞)H is symmetric. Considering (E∞(G∞)H)∗ = HE∞(G∞) as before, we
obtain E∞(G∞)H ⊂ HE∞(G∞) which means that for every F ∈ Dom(H), E∞(G∞)F ∈
Dom(H) and E∞(G∞)HF = HE(G∞)F . Thus, E∞(G∞) reduces H too. �

Lemma 11. The family of projections E∞(G∞, λ) is the resolution of the identity of the
operator HE∞(G∞) acting in E∞(G∞)L2(R

2).

Proof. First, we show that limλ→−∞ E∞(G∞,λ) = 0. It is enough to check that G∞,λ = ∅
for every λ < λ∗. We see from the definitions (22) and (30) of Gn and Gn,λ, respectively,
that Gn,λ∗

= ∅. It follows from (35) and (39) that G∞,λ∗−δn
⊂ Gn,λ∗

, here δn = 24ǫ4n,
n ≥ 2. Hence, G∞,λ = ∅ for every λ < λ∗.

Second, limλ→∞ E∞(G∞,λ) = E∞(G∞) by Lemma 8.
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Third, the family E∞(G∞,λ) is left-continuous since each En(G∞,λ) is left-continuous
and En(G∞,λ)F converges to E∞(G∞,λ)F uniformly in λ for every F (Lemma 7).

Fourth, let λ > µ. Then,

(
E∞(G∞,λ)E∞(G∞,µ)F, G

)
=
(
E∞(G∞,µ)F, E∞(G∞,λ)G

)
= lim

n→∞

(
En(G∞,µ)F, En(G∞,λ)G

)

= lim
n→∞

(
En(G∞,λ)En(G∞,µ)F, G

)
= lim

n→∞

(
En(G∞,µ)F, G

)
=
(
E∞(G∞,µ)F, G

)
.

This means that E∞(G∞,λ)E∞(G∞,µ) = E∞(G∞,µ).
Last, we check that for any g ∈ [E∞(G∞,λ) − E∞(G∞,µ)]D(H), λ > µ,

µ‖g‖2 ≤
(
Hg, g

)
≤ λ‖g‖2. (46)

In fact, let

g = [E∞(G∞,λ) − E∞(G∞,µ)]F, F ∈ C∞
0 (R2). (47)

By (40) and (41),

g(x) =
1

4π2

∫

G∞,λ\G∞,µ

(
F, Ψ∞(~κ)

)
Ψ∞(x)d~κ,

Hg(x) =
1

4π2

∫

G∞,λ\G∞,µ

λ∞(~κ)
(
F, Ψ∞(~κ)

)
Ψ∞(x)d~κ,

‖g‖2
L2(R2) =

(
g, F

)
=

1

4π2

∫

G∞,λ\G∞,µ

∣∣(F, Ψ∞(~κ)
)∣∣2 d~κ, (48)

(
Hg, g

)
=
(
Hg, F

)
=

1

4π2

∫

G∞,λ\G∞,µ

λ∞(~κ)
∣∣(F, Ψ∞(~κ)

)∣∣2 d~κ. (49)

By the definitions of G∞,µ and G∞,λ, the inequality µ ≤ λ∞(~κ) < λ holds when ~κ ∈
G∞,λ \ G∞,µ. Using the last equality in (49) and considering (48), we obtain (46) for
all g given by (47). Since C∞

0 (R2) is dense in Dom(H) with respect to ‖F‖L2(R2) +
‖HF‖L2(R2) norm, inequality (46) can be extended to all g = [E∞(G∞,λ)−E∞(G∞,µ)]F ,
F ∈ Dom(H).

From five properties of E∞(G∞,λ) proved above, it follows that E∞(G∞,λ) is the
resolution of identity belonging to HE∞(G∞) [39]. �

2.4. Proof of Absolute Continuity. Now we show that the branch of spectrum (semi-
axis) corresponding to G∞ is absolutely continuous.

Theorem 12. For any F ∈ C∞
0 (R2) and 0 ≤ ε ≤ 1,

|
(
(E∞(G∞,λ+ε) − E∞(G∞,λ))F, F

)
| ≤ CF λ−(l−1)/lε. (50)

Corollary 13. The spectrum of the operator HE∞(G∞) is absolutely continuous.

Proof. By formula (40),

|
(
(E∞(G∞,λ+ε) − E(G∞,λ))F, F

)
| ≤ CF |G∞,λ+ε \ G∞,λ| .

Applying Lemmas 2 and 4, we immediately get (50).
�
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