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Abstract
Inverse Problem on MREIT is a problem that finding electrical impedance of internal
body by internal electrical relation governed by maxwell’s equation. The simplified equations

are following.

-V-(cVu) = 0 in
—oVu = g on 90

where u(x) is a electrical potential, o(x) is a electrical conductivity, and —oVu(:= J)
is a current density(current passing through unit volume). The objective function is o(x),
provided J or magnetic field density B, particularly only component B, .

This kind of equation actually is very abundant in various modeling, it will not be just a
electrical progress to resolve that inverse problem but many equillibrium model or diffusive
model. In view of this, It was not a brand new approach to approximate it as a discrete
network model[21], there are many instances in area mechanical force balancing, or even
in electrical model. So we introduce electrical network approach here in connection with
finite difference or integral form of equations, and how it will solve them. This will provide
simplified framework in the relation between J, B,, o. In the first chapter, we introduce
about MREIT, in 2nd chapter, we give a brief history on MREIT problem since 1992. In 3rd
chapter, we connect our network approach to the others’ research and try to give linearized
explanation. In 4th chapter, we report our result of numerical simulation using network
approach. We are going to mention that it is very stable to noise and solved very nice and

fast way.
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1. Introduction

We start with typical configuration of EIT problem and later MREIT problem. Electrical

relation of internal body can be formulated as following dirichilet problem.

{—V-(UVu) = 0 in 0 1)

u = f on 09

—oVu :=J is Ohm’s law, ¢ is conductivity, Vu is potential difference and J is current
density. The condition V - (cVu) = 0 is Kirchhoft’s current law or conservation law of
electrical charge. Neumann problem configuration is also possible. In 1.1, we say forward
problem as for given boundary condition f and coefficient o, finding out the solution u. The
backward problem or inverse problem is that finding out coefficient o, for given one or more
pair of f and w of boundary conditions and solutions. So we call it as a EIT problem, an
inverse problem, that finding out conductivity of internal body by measuring only boundary
voltages.

However EIT problem can hardly be solved in high resolution because using only bound-
ary information causes ill-posedness in problem. So there were difficulties in EIT and now
it is mainly used as anomaly detection that we only need low resolution and low cost.

In the meantime, there was another effort to get internal body image, the MRCDI. This
is basically based on the Ampere’s law J = V x B/ug. We can obtain the current density
image from given magnetic field density B via taking curl operator on it. The magnetic
field density B is given by MRI. MRI machine provides magnetic field density of each slice
which is normal to the particular axis. Therefore, since we need whole three component of
(Bz, By, B>), in order to get J, we should rotate and measure the body three times without
any shake and this can be a non-trivial obstacle in practical treatment.

In view of concerning EIT problem, the informations available through non-destructive
way, i.e. not to open or impulse the body, are not only boundary voltages, but also the
internal current density. We can make use of internal information that MRCDI gives via
MRI. The costs increased here are only in economical when using MRI, but feasibility is not
a problem technically. In fact, It is a good few informations to start with to resolve problem
mathematically that we have already internal current density so we expect somehow its well-
posedness and not great complexity. Now we have internal current density then, if we are

known the internal voltage map also by a certain mechanism , or by adding more relations,



we may acquire the conductivity ¢ by Ohm’s law or other relations.
So now we formulate MREIT problem that is EIT based on internal current density J

below. The neumann problem configurations are following.

-V - (oVu) 0 in €
—oVu = g on 09Q

(1.2)

The MREIT problems in above are
MREIT Problem. for given one or more (J,g) pair, find out the conductivity o in
MREIT Problem. for given one or more (B, g) pair, find out the conductivity o in Q

MREIT problem based on B, is introduced in next chapter.



2. History

2.1 1992 ~ 2003

We briefly look inside of history of MREIT since 1992. Since there is a recent paper in 2008
May by Woo[23] which contains almost all references and materials of MREIT, we center
important papers here introducing their issues.

According to the 2008 Woo[23], the first to approach EIT based on current density using
MRI was Zhang in 1992[24], and 1994 Woo[22] and 1995 Birgul and Ider[1] also carried out
research independently.

We first look up the paper 1994 Woo[22]. In general, J and u are not linear about
change of ¢. This is contrast that J, u are linear about change of voltage sources or current
sources. So we can detect linearly by the change of J the change of those sources, but we
can’t with 0. We should deal with ill-posedness due to non-linearity. However an early
researchers started by trying to detect change of o by measuring change of J. Ag;, the
change of o at i-th local part is approximated by linear change J; at each local part. In
other words, by the sensitivity matrix S, they tried the model J; = SAog;. In this model,
Woo suggested following algorithm. Let J be a true given current density. We firstly set
conductivity by guessing and solve the forward problem to get the computed current density
J. They expeceted that conductivity that produce computed current J mostly close to the
true current J should close to true conductivity. According to sensitivity matrix model, we
may update guessed conductivity by computing suitable local change of Ac; so that updated
conductivity produces current J more closer to J and moreover, we estimate the closedness
by measuring ||j —J||2 in Q. So we update conductivity, solve forward problem, and iterate
this procedure and expect conductivity to converge to true conductivity producing almost
close current to J.

We now see the Kwon’s 2002 J-substitution method|[7] that overcome almost all drawback
of Woo’s method and 2003 Kim[6] that proves uniqueness and discusses about convergence. If
we investigate Woo’s method rigorously, firstly J is not linear to o, secondly the conductivity
that produce same current density is not unique, thirdly we can’t assure the convergence
for all cases. About non-uniqueness problem, just think of material whose conductivities
are distributed parallelly to each other that are all perpendicular to the current passing

direction. The current can’t notice the change of conductivity in their passway.



In J-substitution method, they updated conductivity not by sensitivity matrix model,
but by Ohm’s law. The procedures are like this. Set conductivity initially by guessing and
solve forward problem to get the potential Vu. Since we know true current J , we can update
conductivity by onezt = %, which is Ohm’s law.

In order to avoid non-uniqueness, J-subsititution method uses two sets of experimental
true current J* and J2. J' and J? are configured to have following condition a.e. in by

injecting boundary current exclusively.
|TL x 32| #0 (2.1)

Kim[6] proved that the conductivity is unique which produces same such two sets of
current. J-substitution method implemented this by setting two different boundary condi-
tions(injecting currents) in each iterate’s forward problem alternatively and update o by two
different true currents J 1, Jo alternatively. The convergence issues are discussed in Kim[6]

J-subsitituion method is evaluated to have a practical feasibility, but it still needs to
guarantee stability to noise and it takes cost to solve forward problem in each iterate.
Computation time is shown increased rapidly, in 2003 Lee[11] p.1980, due to rapid increasing
of unknowns in 3D problem. This could be another technical obstacle in practical medical
treatement.

Kwon 2002[8] suggested another approach to this problem. We discussed already that
taking sufficient advantages of knowing internal information is probably needed in algorithm.
Kwon uses a kind of characteristic method to reduce internal potential value to boundary
potential value which is measurable. The following fact are used that equipotential lines are

always perpendicular to the direction of current. This induces following linear differential

Xy )\
0= (o)
Xt(()) = T, Xt(Sf € 89, (22)

equation.

where X;(0) = x; is an internal interesting point and X;(s¢) is a final point at boundary.
The values of potentials are same along equipotential line and one of them belongs to the
boundary. So now we have internal potential information and internal current information,
by Ohm’s law, we obtain internal conductivity. All details of this method are well developed
in Kwon[8] in cases conductivity is continuous or discontinuous and case there is a point
that passing current is zero. Equipotential line method became successfully supported by
mathematics. Meanwhile, the fact that equipotential lines are always perpendicular to

stream of current cannot be applied if conductivity is anisotropic tensor.



In 2003, Ider suggested non-iterative method[4] that is shown in Woo’s method and J-
substitution. Ider just recover conductivity by solving a linear system of equations once and
integrate it. This method is based on the curl-free condition of potential, i.e. V x (Vu) = 0.

From this we obtain followings.

Vx(Vu) = 0 (2.3)

J
- =0 2.4
V x . (2.4)

1
VpxJ+pVxJ = 0, p=- (2.5)
VrxJ = -V xJ, T = log p, Vr = Vo (2.6)
p

In above, 2.6 is a linear system whose unknowns are V7. If we write down all its components,

fokn aJ, _ 0Jy
0 J- 7‘]9 Oz oy 0z
or| — _ | 9Jx  OJs

A AN A (2.7)
— ﬁ _6‘]9 _ 9Jy
Jy JZ 0 0z ox oy

and we notice that the rank of this system is only 2. Hence, we use two sets of data, we can
solve for V7(r) for each point. If we are given some amount of conductivity on boundary,
conductivity at internal point r can be attained by integrate V7(r) over grid line or general
line connecting the certain boundary point to it. This kind of non-iterative method shows

very clear process so the method is revealed to have a stability to multiplicative noise.

2.2 2003 ~

We discussed the fact that we need three times measurement of rotated body to obtain

J =V x (B;,By, B;). In the purpose of overcome this difficulty, they tried to pull out

information from only in one component of magnetic field density B, as much as possible

not to make a new MRI-like machine. Also people wanted to know what is inferred exactly

and what is lost exactly. So 2003 Seo[20], 2006 Kwon[10] and [17] investigate these questions.
We can formulate it as B,-based MREIT problem.

MREIT Problem. for given one or more (B, g) pair, find out the conductivity o in
QeR?

The first of these approach is said to be very early paper 1995 Birgul and Ider[1]. However
it seems this is due to their model was 2-dimensional problem of slices of 3D domain. It

seems people found a clue in a early stage research after long time.



In such a context, we look up 2003 Seo[19], Seo[20], Oh[14]. They suggested the Harmonic-
B, algorithm in Seo[19] and Oh[14]. This uses the relation below.

1 o B 0J, 0J, e
Mov B.(r) = oy + 9 V x (Jg, Jy)(r) (2.8)
do Oo ou Ou
_ (97 99 (ou _Ou 2.
(ax’ay) (83/’ &T)’ (2.9)
where V= 9.9 2D x-y plane grad (2.10)
“\ oz By yp g .

If the term (g—Z, —%) is known, then we can put them as coefficients so the equation

becomes linear equation at each point r, and by using two sets of data, we solve 2 by
2 system to get unknowns (g—g, g—‘;). Similarly in Ider’s method, we can recover internal
conductivity by integrate those terms from boundary point to it. This process can be viewed
more intuitively by network model in next chapter. After for a while, they integrate those
terms via layer-potential technic.

However, (g_Z’ f%) are not known coefficients but depend on unknown ¢. The problem
becomes non-linear so they suggested iterative algorithm analogous to J-substitution and
named it Harmonic-B, algorithm. Many experiments are performed under this framework.

When we make use of J, we noticed that the problem is closed. The papers before and
the analysis in next chapter can show this so this aspect enables the non-iterative method.
Since we are now using B, only, we have informations in lost and it is revealed not so much
trivial but a certain enough amount of informations that the problem is not closed anymore.
Without additional assumptions, we may not avoid iterative way and explanation of these
aspects are in next chapter.

Accordingly, Seo[20] consider only domains which are not so much thick in z-axis so that

conductivity is distributed cylindrically, i.e.
Qs =D x (—6,49) (2.11)

We set boundary injecting current suitably so that we can assume the transversal current
J is zero. In this configuration, J can be recovered from B,. We make use of the condition
V -J =0 and the Biot-Savart’s law.

V-] =0 req (2.12)
_ o [ (y—y)e(t) = (z —a)Jy(r)
B.(r) = i ), FTE dr re (2.13)

First, since J, = 0, the 3D divergence-free condition V-J = 0 is equivalent to 2D divergence-

free condition V - (Jy, J,) = 0, hence 2D form can be available.



Another one, Biot-Savart’s law expands in interested domain 2 like this.

By = G [ LR e DM a6 4Bl renn (200

Bl(r) is magnetic field density exerting on Qg from outside of by electrodes and G(r)
is magnetic field density exerting on € from outside 2\ by currents at Q\.

o AN ot /
G(r) = Ho / (v =)o) = (z = &) Jy (r )dr’ r e (2.15)
4T Joa., v —r/[?

Formulation of Biot-Savart’s law raises the property that terms BI(r) and G(r) exerting
from outside of 25 vanishes as taking laplace operator on the equation and term due to

domain itself is abstracted to curl of current. The results are following.
V2B.(r) = —poV x (Jo, Jy) T €9, (2.16)

This also can be identified from the vector identity V x V x B = V(V - B) — V’B =
0 — V2B. So let’s call it curl of Ampere’s law. The left-hand-side of 2.16 is known value
and about right-hand-side, we take advantage of 2D-divergence-free condition to represent
J as streamfunction (%, —%, 0) so that right-hand-side would be poV?3. Hence this is
well-known poisson equaton, we can compute the current J and J, = 0 assures that we’ve
done for all current.

Meanwhile, Ider extended his non-iterative J-based method [4] to B,-based method[5].
Owing to use B, only, the scheme is iterative.

While people were conducting researches with B, It is required that complete and
accurate analysis about this framework is required and In 2006 Kwon[10] and 2007 Park[17]
deal with these questions. 2006 Kwon proved uniqueness in a slice normal to z-axis as a 2D
problem and proved analogously in a 3D domain assuming domain is cylindrical extension
of the slice like in2.11.

2007 Park answered the questions of what is the most recoverable informations and
what is lost exactly by presenting explicit recoverable currents. The paper defined the linear
operator 7 as,

T:J+— (V?B,,J -n) (2.17)

where the values V2B, are in € and the values J - n are in 9€). The kernel of this linear
operator is exactly what we lost and mapped element J¥ is the very current recoverable
mostly. In detatil, the paper proved that the elements J? in the Ker 7 are the elements
that make up 2D curl-free part of current at each slices, i.e. V x J? = 0 and we don’t pose

any boundary current injecting condition there. They also proved that J” is the sum of



two terms, one makes up 3D curl-free part of current. We pose whole boundary injecting
current condition here and denote J°. The other one makes up the part that 2D curl values
are given as fﬁVQBZ at each slices and denote this J*. We will give more explanation
in the next chapter. Therefore, we know explicitly what is gained and what is lost. The
recovered current J*, not assuming J = 0 is called projected current. Moreover, they

estimated the difference between true current and projected current ||J —JZ|| by ||, — J?||

and || 66‘]3 - %H. We can see J would be almostly recoverable if true J, is not so much big
that does not generate any curl part and J does not vary much in z-direction.

The effort to recover conductivity with this projected currents was conducted by 2008
Nam[13]. Since we start with current J*, not B,, this method is non-iterative. In Nam’s
paper, actually, they do not compute J* but recover ¢ directly from B, with whole above
relations and harmonic-B, relation2.16. This is only different in whether find out whole

unknowns J, o or firstly solve for J and replace it to solve for o.



3. Rank explanation with network approach

We introduced several approches to recover J and o from B,, or B, with additional as-

sumption. In this chapter, we particularly look inside the contents in 2007 Park[17]. The

last purpose is to explain what are the counter parts of those in network model and express

them in network terms which is more linearized explanation.

3.1 J recovery in Park’s[17] paper

The recovered current J* in Park’s paper is following.

JP — JO +J*
o 0B
= v a5 v 4. 0 )
ot (81/ dy )
where « satisfies
Via = 0 in Q
V.n = J-n on 90 and [, ads=0
and f§; := B(z,y,t) satisfies in each slice
V28, = Lv2B. i @
B = 0 on O

Moreover, the missing part J? = J — J¥ satisfies,

Vx (P, JgPy=0 in

T ) Yy

3.1.1 Explanation

for all ¢ € (—4,0)

Intrinsically, current is divergence-free, i.e. V -J = 0 and current also satisfies relation

VxJ= fu—l()VQB. Therefore, we consider the following set of equations,

J satisfies

vy =0 in €

VxJ = —L1V?’B in Q
Ho

Jn =g on Of)



We decompose J into curl-free part and remained part as,

J= deree-i—cfree + deree satisfies
V- dereeJrcfree = 0 in Q V- deree = 0 in 0

. 1 2 . (36)
V x deree-i—cfree = 0 in Q V x deree = _mv B in

Jdfreetcfree N = g on 0N Jdfree -1 = 0 on Of)

Again, decompose Jgfree into 2D divergence-free part on each (z,y) slices and remained

part,

J= deT€€+CfT€€ + deree(z,y) + dereeJrcfree(z) satisfies
V- deree-i—cfree = 0 in 9]
V x deree-i—cfree = 0 in Q
dereeJrcfree ‘n = g on oN
V- ‘]dfree(w,y) = 0 in
Y(z,y) X deree(z,y) = *ﬁVQBZ in
Y(y7z) X de’ree(z,y) = f %n Q (37)
V(Z,Z) X deree(z,y) = g m Q
deree(m,y) -n = 0 on Of)
Y deree-l—cfree(z) = 0 in Q
6(137’51) x deree-i—cfree(z) = 0 in €
?(y,z) X Jdfreetcfree(z) = —#—10V2Bm —f in Q
Viza) X Jifreetcfree(z) = *H—l()VQBy —g in
dereeJrcfree(z) 'n = 0 on Of)

Since Jgfreetcfree is curl-free, we express this with scalar potential Vo and Via =
0 because it is also divergence-free. In addition, we pose whole boundary condition to
this term. This term Jgfrcetefree is the very JO in previous section. Also, Jafreetcfree(z)
can be expressed with stream function (g—g, —%, 0) since it is 2D divergence-free. So the
curl-relation is written by 6(:04/) X Jifreetcfree(zy) = -V23 = 7#—10V2Bz. We do not
pose any boundary condition here. This term is the J* before. The remained is J”, we

see@(xyy) x JP =0 above.

3.2 Integral form of MREIT

In this section, we consider integral form of the relations we’ve been used 2.4, 2.13 and 2.16

for purpose to express them in appropriate form that is fit with network model. Let’s donote

10



the small square domain S in figure 3.2 with [J. S is a set on the one slice of ). The integral

form of the left-hand-side in curl of Ampere’s law 2.16 is,

A (@0,90)

i

2

Figure 3.1: small square domain S

/ Viey x JdS = / J.ds (3.8)
O o0
zo+h/2 yo+h/2
= / J| (@ yo—ny2)dT +/ Jyl(zo+h/2.9)dY
zo—h/2 yo—h/2
xo—h/2 yo—h/2
+/ Jz|(z,yo+h/2)dl‘ +/ Jyl(zo+h/2,y)dy (3.9)
zo+h/2 yo+h/2
zo+h/2 yo+h/2
= / Tl (@ yo—n/2yd + / Tyl (@o+n/2.y)dy
Io*h/Q yofh/Q
zo+h/2 yo+h/2
*/ Jr|(z,yo+h/2)d$*/ Jy|(z0+h/2,y)dy (3.10)
Io*h/Q yofh/Q
= Jz(cl, Yo — h/2)h + Jy(l'o + h/2, Cg)h - JI(Cg,yO + h/2)h - Jy(SCO - h/2, C4)h
(3.11)

11



. Stokes’ theorem is used in first equality, mean value theorem is used in last equality with

assuming J € C1(€2). Let’s just assume that for a while. The right-hand-side of 2.16 is,

1 1
/ ~—V?B,dS = —— | VB, nds (3.12)
O Ho Mo JoO
1 zo+h/2 aB Yyo+h/2 aB
= —— |- — | (zo— der/ — |z dy
o /Ioh/2 oy |@vo=h/2) nys B @t/
IUJrh/Q (9B y0+h/2 (9B
+/ —Z| x, h dﬂS*/ —Z| zo+h/2, dy (313>
so_h/2 Ay (z,y0+h/2) vo—h/2 O (zo+h/2,y)
1 (0B, 0B
= —— | —(d —h/2)h h/2,ds)h
Mo<5y(1’y0 /)Jrax(zoJr/,z)
0B, 0B,
- —(d h/2)h — —h/2,dy)h . 3.14
o a4 h2)h = S o ~ /2, di)h) (3.14)
Divergence theorem is used in first equality and we put only z,y terms of B, here because
68% = 0 in the 2D plane. In last equaility, we assumed B € C?(Q) and expressed using

mean value theorem. In addition, Taylor expansion of ‘95 z

_9B. (B.(d1,y0 — B (d1, o)) 0’B,

5 (di,y0 — h/2) = ’2 — +O( o h?) (3.15)
(B (20,90 — h) — B.(0,y0)) 9B, 0B, .,
_ 0, Yo ) 0, Yo +O<<8y2+8x>h>

(3.16)
We again used B is sufficiently smooth fuction. The whole terms similarly becomes,

1 1
/D ——V?B,dS ~ T (Bz(w0,y0 — h) + B2 (x0 + h,yo) + B.(z0,y0 + h) + B.(x0 — h,y0) — 4B (0, y0)) -

Ho
(3.17)
This may be viewed as dicretization of laplace operator in finite difference.
Hence, the curl of Ampere’s law,
1
/ J- ds=—— VB, - nds (3.18)
o0 Mo JoO

is written by,

Jz(cl,yo - h/2)h + Jy(l'o + h/2, Cg)h - JI(Cg, Yo + h/2)h - Jy($0 + h/2, C4)h
1
- (B:(wo,y0 — h) + Bz(wo + h,yo) + Bz (w0, Yo + h) + B.(wo — h, yo) — 4B:(x0, y0)) -
(3.19)
This is algebraic equation about 4 current variables along circumference of square cell [J

and 5 B, variables on the center of each square cells.
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Meanwhile, the integral form of V x Vu = 0 in square cell [J is,

. ~ J
/V x VudS = /V X ——dS (3.20)
O O g
- 1
= / V x —pJds,  (p=-) (3.21)
0 g
_ / _pJ - ds (3.22)
o0
zo+h/2 Yo+h/2
= / _PJz|(m,yofh/2)d$+/ =PIyl (wotn/2.m) Y
zo—h/2 yo—h/2
zo—h/2 Yo—h/2
+/ —/)Jz|(z,yo+h/2)d$+/ =PIyl (ot h/2.)dY (3.23)
zo+h/2 Yo+h/2
zo+h/2 Yo+h/2
= / *PJI|(z,yo—h/2)dz+/ =PIyl @otn/2.y)dY
zo—h/2 yo—h/2
zo+h/2 yot+h/2
7/ *PJx|(m,yo+h/2)d$*/ =PIyl (o tn/2,0)dY (3.24)
zo—h/2 Yo—h/2

= —ple1,y0 — h/2)Jz(e1,y0 — h/2)h — p(xo + h/2,e2)Jy(x0 + h/2,e2)h
+p(es, yo + h/2)Jz(es,yo + h/2)h + p(xo — h/2,e4)Jy(x0 — h/2, e4)h.

(3.25)
This is another algebraic equation.
Finally the integral form of V - J is,
/V-JdS = / J - nds
O o0
zo+h/2 yo+h/2
= / —Jyl(z,yo—h/2)dT + / Jel(wotn/2,)dY
zo—h/2 yo—h/2
zo+h/2 yo+h/2
+/ Jyl(z,yoJrh/Q)dx - / le(zoJrh/Q,y)dy
zo—h/2 yo—h/2

= —Jy(el,yo — h/2)h + Jz(mo + h/2, 62)]1 + Jy(eg,yo + h/2)h — JZ(.TO — h/2

In order to jump to network model from continuous model, we pose two additional
assumption. One is assumption that second derivative |[D2J| is not so big that we can

and

locally approximate J linearly. The other one is partial derivatives ‘%—];| < ’86'—];

o1, | |0
dy <<’ax

the tendency was found in the numerical simulation and this needs more explanation how

similarly ’ . Concern about second assumption, this is not true in general, but

come we do that.
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(3.27)

5 64)h.
(3.28)



The left-hand-side of the 3.19, we use second assumption so that we treat J, along

very short z-line in [ as a constant compared with J,. Hence, we express first term

f;ooj: // 22 Jel(@,yo—h/2)ydx = j1h, which is constant in there. The whole equation are following.
Jih + j2h — jsh — jah
1
=T (Bz(20,y0 — h) + Bz(z0 + h,y0) + Bz(z0,y0 + h) + B (w0 — h,y0) — 4B.(z0,v0))

(3.29)

This is a constant coefficients linear equation.

Secondly, in 3.25 V x Vu = 0 condition, we use second assumption again so the first

integral f;ooj://; —pJz|(z,yo—hy2)dT = j1 f;ﬁ”j://; —pdx. Similarly,
5 I0+h/2 y0+h/2
/ V xVudS = j1/ —pdz +j2/ —pdy
D Io*h/Q ygfh/Q
zo+h/2 yo+h/2
*js/ —pdx *j4/ —pdy (3.30)
zo—h/2 yo—h/2
= —J1p1+ J2p2 + J3p3 — Japa- (3.31)

we put [ p also as a representative variable p = [ p here. This is also a constant coefficients
linear equation, .

Lastly, In 3.28 V - J = 0 condition, we use first assumption so that J is locally linear
in S. The first integral ffo"j://; —Jyl(@,yo—n/2ydx = —Jy(x0, yo — h/2). This value is just js
of the square translated by (h/2,h/2). So this becomes also a constant coefficients linear
equation. We’ve tried these approximations in purpose to assign continuous variables into

network edge variables.

3.3 Introduction to network approach

Let’s consider following discrete resistive network instead of continuous domain 2. In resis-
tive network, the current in a edge is not changed in there, resistivity is also represented by
one value in there so the algebraic equations above are all linear. In this section, we mainly
discuss the each counterpart of conditions V-J = 0, V x Vu and V2B, (r) = — oV % (Jzy Jy)
in resistive network. Also counting how many network variables such as nodes, edges and

loops are presented.
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Figure 3.2: Resistive Networks

3.3.1 Kirchoff’s Laws, curl of Ampere’s Law

The conditons V -J = 0 and V x Vu are just Kirchhoff’s current law and voltage law
in resistive network. These two laws and harmonic-B, relation(or curl of Ampere’s law)
in network are connected to continuous problem by approximation of integral forms with
additional assumptions as we discuss before.

The MREIT problem on these resistive networks are following.

MREIT Problem. for given one or more (J,g) edge-variable pair, find out the edge-

variable conductivity o in Q

MREIT Problem. for given one or more (B,,qg) edge-variable pair, find out the edge-

variable conductivity o in )

In continuous version, we solve partial differential equation to recover conductivity using
the laws, on the other hand in discrete version, we solve a linear system of equations and

each laws make up for each amount of ranks in the system.

3.3.2 Counting Network Variables

As in the Figure 3.2, we count network variables nodes, edges and loops. Potential u is node
variable, current j and o are edge variables. Loops are used in Kirchhoff’s voltage laws. For

square grid in 2D or 3D, the total number of nodes are counted as,

number of nodes = n? in 2D (3.32)

number of nodes = n3 in 3D (3.33)
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On the other hand, the total number of edges are,

number of edges = 2n(n — 1) ~2n*>  in 2D (3.34)
number of edges = 3n?(n — 1) ~ 3n? in 3D (3.35)

and for the loops which is applicable for any closed path, we only count linearly indepen-
dent loops, i.e. loops that are representable with other loops’ combination are not counted,
hence we work with each cell’s loop basically. Think of each cube cell in 3D, there are six
faces and loops are available for each faces. Two faces are normal to x-axis, the other two
faces are normal to y-axis, and the rest two faces are normal to z-axis. The loops of one
direction are representable by those of the other two directions. Therefore the total number

of linearly independent loops are below.

number of loops = (n — 1) ~ n? in 2D (3.36)
number of loops = 2n(n — 1)* ~ 2n® in 3D (3.37)
For the ranks that each laws can fill up are counted below. Kirchhoff’s current law(KCL)

is applied to each nodes and Kirchchoff’s voltage law(KVL) is applied to each loops. 2D

curl of Ampere’s law is applied to loops on each slices.

2D KCL ~ n? (3.38)

2D KVL ~ n? (3.39)

3D KCL ~ n® (3.40)

2D KVL ~ 2n? (3.41)

2D curl of Ampere’s law ~ n® (3.42)

The total number of unknowns o or o, j are same as that of edges each.

For example, consider the simplest constitution of MREIT problem that 2D J is given in
network. To determine the 2n? of unknowns o, available law is Kirchhoff’s voltage law only.
Kirchhoff’s current law is for validating given current j. The total available equations are
n? which lack half of required. Therefore we employee two sets of current data, we can solve
them under condition all equations in them are linearly independent to each other. This
condition is seen at 2.1 before, and the uniquness of network version is therefore consistent
with that of continuous version using two such sets of data on Kim|[6]. We investigate other

constitutions.
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3.4 Rank explanation with network approach

3.4.1 Rank sufficiency in 3D with J

3D case for given j, we can solve.
e Unknowns
— o~ 3n?
available equations are,
e Equations
— KVL ~ 2n3 x 2

as you can see, system becomes over-determined.

3.4.2 Rank deficiency in 3D with B,

3D case for given B, unknowns are as below.
e Unknowns

— 0 ~3n?

- J~3n2x2
available equations are,
e Equations

— curl of Ampere’s law ~ n2 x 2

— KVL ~2n3 x 2

So here, network model reflect that we cannot close problem only with B,. Hence iterative

schemes have been used in continuous version.

3.4.3 Rank sufficiency in 2D with B,
2D case for given B,, we can solve.
e Unknowns

— 0~ 2n?
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— J~2n?x2
e Equations

— curl of Ampere’s law ~ n? x 2
— 2D KVL ~ n? x 2
— 2D KCL ~ n? x 2

This is consistent with the result of 2006 Kwon[10].

3.4.4 Rank sufficiency in 3D with B.,J, =0

2003 Seo[20] recovered J by using B, with additional condition J, = 0. Unknowns for this
case that are interested are only edges in (, y)-plane, not in z-axis. So latter are not counted

for unknowns. Also 3D KCL are available in this case.
e Unknowns
— o ~2n?
—J~2n3x2
e Equations

— curl of Ampere’s law ~ n3 x 2
— KVL ~n3x2
— KCL ~n®x 2

Network model reflect the number of ranks are enough to solve system and so did in con-
tinuous version in Seo’s paper. In view of this, employeeing Harmonic-B, or J-subsitition
are redundant when assuming J, = 0.

3.4.5 Rank sufficiency in 3D with B, for projected current

Last case recover J*, o from B,.

e Unknowns

— 0 ~3n?
—JO~3n%x2

—J* ~2n% x 2

18



e Equations

— 3D KVL ~ 2n3 x 2

— 2D KCL of J° ~ n3 x 2

— 2D KVL of J° ~ 2n3 x 2

— 3D KCL of J* ~n3 x 2

— curl of Ampere’s law of J* ~ n3 x 2
z-direction edges can also be ignored as in case before, then equations in z-direction KVL
also are removed. Since KVL using projected current are also in approximation sense, this

consititution seems more reasonable. Again, we recover J in this case, so the problem is

closed and can be solved by non-iterative scheme as in 2008 Nam[13].
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4. Simulation of Network Approach

In this chapter, we present numerical simulation of network approach for configurations
given J in 2D and 3D cases. Large part of this chapter is the testing stability to noise of

this method and also there will be several reported properties of this method.

4.1 Problem definition

The detail configuration of problem this simulation conducted are followings.

MREIT Problem. e for given one or more (J, g) edge-variable pair, find out the edge-

variable conductivity o in €,

Q is rectangular 2D or 3D domain,

o We assume that the conductivity tensor o is bounded and positive definite, i.e., there

exists known positive constants co and Cy such that

0<c<o<Ch<oo in € (4.1)

e The conductivity o is also assumed to be given in some part of the boundary, i.e.,

o=o09 on D C O (4.2)

The conductivity is isotropic or semi-anisotropic so that we assign conductivity to

a 0 a 0 a b
o(x) = entry of [0 a‘| or |‘0 b] , not lb c] (4.3)

In addition, noise is usually modeled either additive noise[18], or multiplicative noise.

network edge, i.e.,

the former is a global background noise and the latter is proportional to local magnitude of
current. This paper contains result testing only stability to multiplicative noise. The noise

model in this paper is following.

I (x) = (1+ e R(x))JI(x), (4.4)
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where R(x) is a random noise made by a uniform random number generator which produces
values between —1 and 1, and € > 0 measures the size of the noise.

The stability of the method also depends on the a-priori estimate in (4.1). In the nu-
merical test the true value of each components of the conductivity tensor is between 1 and
5. Since the exact range of the conductivity should not be assumed in the reconstruction
process, we assumed that it is between 0.5 and 10. Hence, if a recovered conductivity value
is above 10, then it was set as 10. Similarly, any recovered value below 0.5 was set as 0.5 in
the recovery process. It is tested in Figure 4.10 that the method becomes unstable as the

range of this a-priori estimate increases.

4.2 2D cases

We consider the two dimensional case in this section. If we think of conductivities having a
volume at that size of cell h, conductivity in cell is filled with identical values. In isotropic
conductivity case, the horizontal and the vertical edge’s conductivity are assigned by same
value a;; = b;;. In semi-anisotropic conductivity case, the horizontal edge is assigned by
a;; and the vertical edge by b;;. Finding the resistivity a;;’s and b;;’s from given electrical
currents Jii’s and Jf’j’s and the boundary resistivity will be called a backward problem in
the following. First note that there are 2n(n— 1) resistors in the system and 4(n—1) of them
are boundary resistors, which are a;g, ain, bo; and b,; for 1 <i7,5 <n — 1. We assume that
the resistivity of the boundary material can be observed. In fact, we assume that 2(n — 1)
boundary resistors a;o’s and bg;’s are given and then find the other 2(n — 1)® unknown
resistors including 2(n — 1) boundary resistors a;,’s and b,;’s. Hence the given boundary

region in (4.2) is the one on the z, y-axes, i.e.,
og=09 on DCON with D:={(z,y):2=0ory=0}. (4.5)

Consider a loop given in Figure 4.1, where the currents J; and ij flow along the resistors
ai; and b;;, respectively. There are (n — 1)? of such loops and the Kirchhoff’s circuit law

gives (n — 1)? number of equations:

TPy jbicrg + J8ai; — Jhbi; — I8 qaij—1 =0, 1<i,j<n-—1. (4.6)

Therefore, it is clear that one set of current data is not enough to solve this backward
problem and we need at least two sets of current data. However, if an isotropic conductivity
is considered, the single set of current data is just enough and we will see that in the following

section.
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Figure 4.1: A continuous conductivity body is discretized using a resistive network. Then

the backward solver is given by the Kirchhoft’s voltage (or circuit) law.

There are four unknowns in the equation (4.6). Since the boundary resistivity is assumed
to be given, two of them are known if the loop under consideration is the one at the origin.
If two sets of the current data are provided, then one can solve (4.6) at the corner loop. One
may continue this process until the computation is completed since one can find a loop that
two of the resistors are given from previous steps. Note that, if a current vector is given at

a grid point (x;,y;), then we may set its x and y components as J{ and Jf’j respectively.

4.2.1 2D isotropic conductivity

The conductivity tensor actually gives a scalar multiplication in the isotropic case. For
the two dimensional case we may simply set a;; = b;; and consider a;; as this isotropic
resistivity at the grid point (z;,y;). Then there are basically n? unknowns left since the
boundary resistors on the x, y-axes are given. Hence the resistivity can be recovered using
a single data set of currents. Suppose that a;_;; and a;j—; are given from previous steps.
Then a;; is obtained by
i1 JP j

ai; = Te - Jibj aij—1 7 ij ai—1; - (4.7)
Note that the setting a;; = b;; for the isotropic case is related to the domain D is given
in (4.5). Then, a;; can be computed since ag; and ajg are given. After that, a1z and ag;
can be similarly computed, and one may continue this process increasing ¢ + j as long as
i = Jf’j # 0.
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(a) nothing recovered (b) partly recovered (¢) completely recovered

Figure 4.2: Two dimensional isotropic conductivity has been recovered under three different
injection currents. Injection currents are denoted by arrows. The best result is (c). In this

example noise levels are all zero.

It is clear that if the denominator Jf; — Jibj in the reconstruction formula (4.7) is near
zero, then the conductivity is not recovered correctly. Hence it is important to consider a
injection current to avoid such a situation. First consider the worst the injection current
that uses two corner points (0,0) and (1,1) (i.e., goo = gnn = 1 and all the other boundary
currents are zero). Then the main stream of the current is in the direction of vector (1,1)
which will make the denominator in (4.7) be small. In Figure 4.2(a) the results of recovered
conductivity is given using this injection current. Even though the numerical computation
has been done under very small noise, the conductivity is not recovered at all.

If the current is injected using the points (0.5,0) and (0.5,1) as in Figure 4.2(b), some
portion of the conductivity is recovered. However, there are spots with poor resolution. It
seems that the bad spots start from a point that the electric current becomes parallel to the
vector (1,1). The best case is the one that the current is injected using the points (1,0) and
(0,1). Then the main stream of the current is aligned to the direction of slope negative one
and Ji; — ij seems to be away from zero. The recovered conductivity is given in Figure
4.2(c) which shows a perfectly recovered image. Note that these images were recovered

without noise.

Remark 1. It was shown that a single set of internal current data is not enough to decide the
conductivity image in a unique way (see, e.g., [6, p. 1216]). However, if the conductivity is
given on the whole boundary OS2, then such a non-uniqueness examples cannot be constructed.

If the boundary conductivity is given partially as in (4.5), then the uniqueness depends on the
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injection currents. If the injection current is given as in Figure 4.2(c), then the examples in
[6] do not work since conductivity of the boundary from an injection point to the other one
is giwen and all the equipotential lines are connected to the given boundary. This is another

reason for the preferred injection current.

If the injection current in Figure 4.2(a) is employed, then we may consider the model
under the assumption that a;; = b;—1; with the given boundary D := {(z,y):x =1ory =
0}. Tt is also possible to recover the conductivity after dividing the whole domain into several
parts. Then, the image of each part of the domain can be computed starting from a corner
point and then combined to get the whole picture. For simplicity, we consider the model
case a;; = b;; only for the isotropic case and the injecting current given as in Figure 4.2(c)

in the following numerical examples.

Remark 2. Notice that under the assumption a;; = b;; for the isotropic case there is a
preferred direction of current injection. This non-symmetric structure of the scheme can be
removed as following. Let r;; be the resistivity at the grid point (z;,y;). Then, the resistivity

a;; and by; can be replaced as the average of the adjacent resistivity, i.e., (4.6) can be replaced
by

Tij T Tic1j b Tis trig-1 go Tig—1 +ri-1,-1

2 i 2 ij-1 2

Ti—1,5 +Ti—1,5—1

2

=0.

b a
Ji*lj + Jz]

Suppose that r;_1 4,7 j—1 and r;_1 j—1 are already obtained in the previous steps. Then 7y

s obtained by

b

o (rij—1 +ricrg—1) = S (ricay +ric1-1)
a b
o —Jb,

Tij = —l—JibjTi,j_l —J{ljm_ld‘.

Hence we still have the same denominator J{; — Jf’j and it should be away from zero for
the stability. Furthermore the extra addition term Jf’jriyj,l — ijri,lﬁj is another source of
noise which is proportional to (Jibj — Ji%). Hence this scheme is more sensitive on the noise

and the numerical examples show blow-ups even for a low noise level.

It is well known that if the electrical current is perpendicular to the discontinuity of
the conductivity image, then such a change is not detectible. In Figure 4.3 such a case is
tested and, even with a 25% noise level, the conductivity is recovered reasonably. It is pretty
obvious that the boundary conductivity is the source of the information, and it makes the
problem stable.

In Figure 4.4, a numerical example using a CT image of a human body as an original

conductivity is given. It is possible that certain geometric structure of the body may trigger
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(a) true value (b) recovered with 10% noise (c) recovered from 25% noise

Figure 4.3: This is an example that the discontinuity of the conductivity is orthogonal to
the main stream of the current. Since the boundary conductivity is assumed to be given,

the conductivity is reasonably recovered even with 25% of noise.

a singularity property of the method. In this example one may observe that even if the noise
level is of 25% the two dimensional conductivity is recovered reasonably. However, one may
observe a singularity with a noise level higher than this level, which is similar to the third

figure in the second row of Figure 4.8.

4.2.2 2D semi-anisotropic conductivity

If the conductivity tensor is a diagonal matrix, which is called a semi-anisotropic case in this
paper, the diagonal elements correspond to a;; and b;; for the two dimensional case. If the
diagonal entries are positive numbers, then the tensor is positive definite. Hence, we may
take any two images to assign the resistivity of vertical and horizontal resistors a;;’s and b;;’s.
The total number of resistors for the two dimensional resistive network is 2(n—1)?+2(n—1).
If 2(n — 1) boundary resistors a;o’s and bg;’s are given, then 2(n — 1)? unknown resistors are
left. Since the Kirchhoff’s circuit law gives (n — 1)2 number of equations in (4.6), it is clear
that one set of current data is not enough for the solvability. We should take at least two

sets of current data and we denote them by ij" and Jikjb, k = 1,2. Then we obtain 2(n —1)?

equations:
la,. _ 7lbp.  _ 7la R s 1) o
Jija’lj Jiij = Jij—10ij-1 Jz‘—1jbz—13a ..
1<i,j<n-—1. (4.8)
J2aa_ L J2bb- L J2a Qi s _ J2b b, X - -
ig %] ijvi] — Yij—1%ij—1 i—15%—17>

Suppose that a;;—; and b;_i; are boundary resistors or obtained from previous steps.

Then a;; and b;; can be computed by solving the 2 by 2 system in (4.8). Therefore, the
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(d) 5% noise (e) 10% noise (f) 256% noise

Figure 4.4: Isotropic conductivity recovery in two dimensional space. The noise level is

increased up to 25%.
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Figure 4.5: Two dimensional semi-isotropic conductivity images obtained as increasing the
number of given boundary layers from 2 to 8. The noise level is 5%. The images in the

second row are of horizontal resisters a;;’s and the ones in the third row are for b;;’s.
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stability of the method depends on the condition number of the matrix

() (19)
i ij

It was observed that there is a preferred direction of injection current for the isotropic case.
For the semi-anisotropic case the two sets of current data required in the algorithm have no
preferred direction. Note that the isotropic setting a;; = b;; is not used anymore. However,
if the two currents J! and J? are parallel at a point, the matrix A becomes singular. Hence,
it is important to choose two currents in a way that they make large angles to each other.
In the following we compare two approaches.

First, notice that the electrical current becomes parallel to the boundary if the boundary
point is away from the boundary current sources. This makes the matrix in (4.9) have a
large condition number along the boundary. To reduce this boundary effect the resistors
in several boundary layers are assumed to be given. It is tested as increasing the number
of given layers in Figure 4.5. The recovered conductivity images show interesting behavior.
The conductivity image near the boundary is very poor, which was expected due to the
large condition number of the matrix A near boundary. Since the reconstruction technique
is performed from the boundary cells, the interior image is expected to show poor resolution
from the effect of the poor boundary image. However, the inside image is a lot better than
the boundary one. It seems that there is a mechanism that neutralizes the boundary blow-
ups. Another interesting thing is that the images of horizontal resistors a;; in the second
row of Figure 4.5 show horizontal strips and the images for b;;’s show vertical strips. One
may also find similar phenomenon in the three dimensional computations, Figures 4.9 and
4.10 even though the trips are weaker in the three dimensional examples. It seems that
this behavior indicates that the noises in the vertical and the horizontal resistors propagate
independently. Having the conductivity of several boundary layers is a strong hypothesis.
However, even if several boundary layers are assumed to be given, it only makes a small
improvement.

The second approach is to increase the number of input nodes. So far we have used only
two nodes, which is an extreme case. Now we increase the number of nodes up to forty of
them. Note that one of the main advantages of using a resistive network method is that
the input current g(z), x € 912, is not required in the reconstruction process. Hence one
may choose even a random input data using various number of nodes at various places for
input currents as long as the condition is satisfied that summation of all boundary injecting
current is zero for solvability of neumann problem. This property removes many annoying

experimental details that should be considered otherwise. In Figure 4.6 conductivity images
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20 input nodes

10 input nodes 20 input nodes 40 input nodes

Figure 4.6: Two dimensional semi-isotropic conductivity images obtained as increasing the
number of input nodes from 10 to 40. For example, five input nodes were used to each of

two parallel sides which totals ten input nodes. The noise level in this example is 10%.
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Figure 4.7: A cell of a three dimensional resistive Network

are recovered as increasing the number of input nodes. One may observe that the method
becomes more stable as the number of input nodes are increased. This second approach
seems the right one to improve the stability of the method.

In these examples one may conclude that the semi-anisotropic case is more unstable in
compare with the isotropic one. For the isotropic case the conductivity image has been
recovered using only two input nodes with an acceptable resolution even with the noise
level 25%. However, the images for the semi-anisotropic case is very poor under the same

conditions.

4.3 3D cases

We now consider the three dimensional case. The domain is Q := [0,1] x [0, 1] x [0, 1] and

the boundary conductivity is assumed to be given on D C 92 given as the following;:
o=o09 on DCON with D:={(z,y):2=0, y=0, orz=0}. (4.10)

A cell for a three dimensional resistive network is given in Figure 4.7. As in the fig-
ure, the positive number ¢;;; denotes the resistor (or its resistivity) below the grid point
(%i,9y4,2x). The other resisters a;j, and b;j; are the ones parallel to the z, y-axes, respec-
tively. First note that there are 3n(n — 1)? resistors in the system and about 12(n — 1)? of
them are boundary ones. We assume that boundary resistors on the xy-,z2- and yz-planes,

a0, Dijo, Giok, ciOk, bojr and cojx’s, are given and then find other 3(n— 1)3 unknown resistors.
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Consider the three faces of the cubic cell in Figure 4.7 that contains the vertex (z;,y;, 2 )-

If the Kirchhofl’s circuit law is applied to each of these three faces, then we obtain

Tieaigh = Jhkbigk = 1 paij-1k — TPy izt

szjkbijk —ijkcl’jk = szjkflbijk—l —ijflkcij—lk, 1 < Z.,j,kgn*l. (411)
Sk @ik — Jicijle = Jijp-1@i k=1 = Jiq jpCi-1jk

Suppose that all the resistors are given in previous steps except the ones indexed with ;;1’.

Then the right hand sides are given terms, and the three unknown resistors with subindex

‘ijx’ should be computed using these three equations. Adding first two equations gives
b
Tieaigh — Jncijk = T 1 ki i1k + Iy ko1big o1 = J5 i1 kCijo1k = i jubio i

Comparing this equation to the third one, one can easily see that the linear system has a

solution only if
b
Jz'aj—1kaijflk*ijk—ﬂijkflJFJgk 1bijk—1—J 1 jibi—1 ki jkCim1 gk —Jij_1 kCij—1k = 0.

Then, the third equation in (4.11) is the sum of the first two. Hence, we have only two
equations applying the Kirchhoft’s circuit law to the three dimensional cell. The total
number of equations is 2(n — 1)3, which is enough for the isotropic cases but not for the

semi-anisotropic case.

4.3.1 3D Isotropic conductivity

For the three dimensional case we similarly set a;;r = bi;x = c;jr and consider a;j, as the
isotropic resistivity value at the grid point (z;,y;, 2x). Then the problem becomes over
determined. We rewrite (4.11) as

aigk = (J35 1 g@ij—1k = JPy jpaim1 )/ (T — Ti)s
aiji = (Ji_1 @izt ji — Jf j1ije—1)/ (5 i = k), 1<igjk<n—-1. (412

aijk = (s 1ij -1 — Iy paigo1k) /(T — JS0)s

Therefore, if S = ijk = ik the problem is unsolvable. If the three terms are close to
each other, then the recovery of the conductivity becomes unstable to noises. Hence we need
to choose the injection current in a way to avoid such a situation.

The first strategy is to choose one of the three equations that makes the method most

stable. Consider three quantities

A= Jl]k + szk B .= szk icjk — ka + chk
(Ji5)% + () (1) + (J51)? (J51)% + (J5)?
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These measure the cosine of the angle between vectors (1,1) and (JZ, Jibjk), (Jiks ) ot

(Jf’jk, ijk), respectively. Hence we choose the equation corresponding to the smallest one.
It seems that this approach is slightly better and solving (4.12) in a least square sense.

The second strategy is to choose an injection current in a way that the main stream
of the electric current is orthogonal to the diagonal direction vector v := (1,1,1)/ V3.
For the comparison purpose we consider three kinds of injection currents. We have chosen
two points (0,0,0) and (1,1,1) to apply the first injection current. Then the main current
direction is parallel to v;, which should be the worst case. In the first row of Figure 4.8
conductivity images recovered using this current are given. This numerical computation
has been done for a three dimensional case with 128 x 128 x 128 mesh and then the slice
which is identical to the two dimensional image has been displayed. In this case the image is
recovered without noise only. Note that the two dimensional conductivity is not recovered
at all even without any noise, Figure 4.2(a). The three dimensional case seems more stable
than the two dimensional case.

The second injection current is given through two vertex points (1,0, 1) and (0,1,0). Let
vo := (1,—1,1)/+/3 be the unit vector that connects these two points. The angle 6 between
the vectors v; and vy satisfies

cos = vy vy =1/3,

i.e., the angle # = 70.5 in degree. In the second row of Figure 4.8 conductivity images
recovered using this current are given. In this case the conductivity is well recovered even
with high noise levels. In compare with Figure 4.2(b) this three dimensional case is more
stable than the two dimensional case. Note that, under the noise level of 40%, there is a
black strip in the middle of the left half.

The last injection current uses two middle points of edges, (0,1,0.5) and (1,0,0.5). Let
vy := (1,—1,0)/v/2 be the unit vector that connects these two points. This vector is

orthogonal to the diagonal direction, i.e.,
cost = vy -vy =0.

In the third row of Figure 4.8 three images recovered using this injection current are given.
The recovered images are better than the ones in the second row. In particular the one of

noise level of 40% does not have a black strip in this case.

4.3.2 3D semi-anisotropic case

It is clear that a single set of current data is not enough to decide the semi-anisotropic

conductivity and hence we use two sets of current data for the backward solver. Let J' and
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J2 be two given currents. Then the Kirchhoff’s circuit law gives four equations for each cell:

la ... _ 7lb ... _ 7la L. _ 7lb . .
Jijkawk Jz‘jkbwk = Jij—l EQij—1k Ji—1jkbz—1aka
JW b — J e =JW b —JX e 1k o

;Jk ] z2jbk ) 12]](2 1Y) z]2b1k ) ’ 1§Z,],k§n71. (413)
a a
Jijkaijk - Jijkbijk = Jijfl kQij—1k — Jifljkbifljkv

21 . 72 ... _ 72b B 72 .
Jijkbwk Jz‘jkcwk*Jijk—ﬁwkfl Jij—lkcwflkv

In Figure 4.9 a numerical example for three dimensional semi-anisotropic conductivity
reconstruction is given. First, for this experiment, a three dimensional cubic domain 2 =
[0, 1]3 is discretized into 128 cubic cells and three dimensional images have been constructed
for resistors a;jx’s, biji’s, and ¢;j1’s. For the current injections, two kinds of injection currents
are applied using 20 input nodes. The first set of electrical current data is measured after
applying the boundary current on two sides which are parallel to the yz-plan. The second
one is measured after applying the currents on the sides parallel to zz-plan. Note that these
two currents are mostly move to the direction of x and y axes. Hence z-component of the
current is weaker than others.

The images for a;;;’s and b;;;’s in Figure 4.9 are in a good shape. However, the one for
ciji’s is poor. It needs to make the current move to the direction of z-axis or add this current
to use three sets of data to obtain a better conductivity image related to that direction. The
images for a,;’s and b;;i’s are in a good shape even with 25% noise. There are lines in the
images which is weaker than the ones of the two dimensional cases. One can clearly observe
that this three dimensional case is more stable that the two dimensional one.

In this example each component of the true conductivity is between 1 and 5. In the
construction process, it is assumed that we have an a-priori estimate that conductivity
satisfies 0.5 < ¢ < 10. Hence any reconstructed conductivity value higher than 10 was set
as 10. Similarly, any value below 0.5 was set as 0.5. In Figure 4.10, the performance is
tested under different a-priori estimates. The first row of the figure is simply a different
slice of the previous example which uses the same a-priori estimate 0.5 < ¢ < 10. The
images in the second and third rows were built using a-priori estimates 0.25 < ¢ < 20 and
0.125 < o < 40, respectively. In the figures one can clearly observe that the performance of
the method strongly depends on the a-priori estimate of the conductivity. Since recovering
process takes only couple of minutes, we may vary these a-priori estimates after seeing the

results on treatment time, though.
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10% noise 20% noise 40% noise

Figure 4.8: Isotropic conductivity image in three dimension. Injection current for the first
row is given through two points (0,0,0) and (1,1,1). The second row uses (1,0,1) and
(0,1,0) and the third one uses (0,1,0.5) and (1,0,0.5).
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a;jr, of true image

Ba.

ar, with 1% noise b with 1% noise ¢k with 1% noise

ciji; of true image

a;j, with 25% noise by with 25% noise ¢ with 25% noise

Figure 4.9: Three dimensional semi-anisotropic conductivity images. Two sets of injection
currents are applied in the direction of z and y-axes. These figures are slices of three
dimensional body orthogonal to the z-axis with £ = 68 out of 128. The image for c;j; is

worse than others since the current in the dig%ction is weaker.



¥ vip 5 el

Images for a;ji, bijr and c;jx, reconstructed under a-priori estimate: 0.5 < o < 10.

Images for a;jr, byji and c;j;, reconstructed under a-priori estimate: 0.125 < o < 40.

Figure 4.10: Three dimensional semi-anisotropic conductivity images. Two sets of injection
currents are applied in the direction of x and y-axes. These figures are slices of three
dimensional body orthogonal to the z-axis with ¢ = 60 out of 128 layers. The actual

conductivity is range is 1 < o < 5. The noise level of this example is 10%.
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5. Conclusions

When a non-iterative MREIT method for a static conductivity image is applicable is dis-
cussed in chapter 3 and has been developed on a resistive network in chapter 4. The image
for an isotropic case is reconstructed from a single set of internal current and the bound-
ary conductivity. Two sets of current data are used for a semi-anisotropic case that the
conductivity tensor is given as a diagonal matrix. The numerical stability tests for various
cases have been performed. For the test a multiplicative random noise has been added to
the current and the conductivity has been reconstructed using this noised data. The re-
covered images indicate that the method has certain stability property. Three dimensional
examples show more stable behaviors than the two dimensional ones. The noise level can be
increased up to 40% for three dimensional isotropic case. For the three dimensional semi-
anisotropic case is done with up to 25% noise level. Since this is a direct method based on
the Kirchhoff’s laws of current and voltage, the computation time is minimum. It only takes
couple of minutes for the three dimensional computation with 1283 meshes on a personal
computer. So one may try various configuration on the same data considering one’s own
target rather than try to set conditions once. Unfortunately, the rectangular network in this
paper is not general enough to handle the fully anisotropic case because we can’t know the
each direction of eigenvectors of anisotropic tensor. It seems that a network with a flexible
structure is required to handle the case if there is one. Obtaining one will be a real challenge
in the future. Another thing that should be considered is a denoising technique that fits
to the proposed method. We only tested how the method works under noise. We expect
that a proper denoising technique may improve the performance. In addition, since other
researchers frequently use additive noise model which is based on the paper Scott[18], to test
stability about this noise model is still remained task to do. Also, If we implement B,-based
network approach before we investigate anisotropic case, we can experience phenomenon to

handle the situation more degrees of freedom are added.
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6. Appendix : Stability analysis

In this section we will see that a classical stability analysis of a linear system shows the
stability of the conductivity reconstruction method discussed in this paper. For simplicity,
we consider a two dimensional semi-anisotropic conductivity in the following discussion. The
total number of resistors for such a case is 2n? 4+ 2n. The 2n boundary resistors, aio’s and
bo;’s, are assumed to be given. Hence the total number of unknown resistors is 2n%. If the
currents J;; and JZ-bj that flow through the resistors a;; and b;;, respectively, are given for

0 <14,j <n—1, then the Kirchhoff’s circuit law gives n?

number of equations as in (4.6).
In the numerical examples two or more sets of current data can be used. In doing that two
equations has been chosen in the way that the corresponding 2 x 2 matrix has the smallest
condition number among other possible choices.

In the followings we consider the currents which are chosen in a way that the following

la 1b

( Jij JZ_J_ )
2a 2b
Jij Jij

is not singular. Then we solve the following 2n? equations:

matrix

b b _
Jijaij — Jiibij+ Jily jbioag — Ji i1 =0, 1<ij<n—1 (6.1)
JHai; — JRbij+ P jbic1; — JH qaij1 =0, -

Since a;o’s and by;’s are given, these 2n? equations can be written as
Cy=f1, (6.2)

where C' = (c;;) is a 2n? x 2n? sparse matrix consists of the coefficients J}j“, J}jb, ij“ and ijb
and the vector y is 2n? column vector consists of 2n? unknown resistors. The right hand
side column vector f appears due to the given boundary resistors and hence it has at most
2n — 1 nonzero elements.

For the stability analysis consider perturbed current data J fj’s with k£ = 1,2. Then the

actual linear system one may obtain is an approximation of (6.2) that is written as
Cy =f. (6.3)
Now we test the stability of the problem. Let

e=y-y, E=C-C, h=f—f and H, =J5 -J%, 0<ij<n-1 k=12

17
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The condition number of a nonsingular matrix C is k = cond(C) = ||C||oo]|C ™| co- First

we consider the solvability of the perturbed problem which depends on the following lemma:

Lemma 1 (Neumann Lemma). If |C7 o || Elloc <1, then I+C~'E is invertible. Hence
C(I+C™'E)=C+ E = C is invertible, too.

One can easily see that E = C' — C has at most four nonzero elements in each row.

Hence, it is clear that

2n?
FE = ( .. ) < 4 Hla Hlb H?a H2b
1Blloe = | max (D leyl) <4 max  (HF| |HY|IHT | »
j=1 ( . )
Iiloo =, 230 o il < o mspe (o LS, os Hog, ol L5 b s )

Therefore, if

1 1<l
H Hlb H?| |H?)) < = o0
e (L VL VHE L L) < e = T

(6.5)
the perturbed problem (6.3) is solvable. Using (6.2) the perturbed system can be written as
(C+E)e=h-Fy,

and
e=(C+E)'(h—FEy)=(I+C'E)Y"'C~'(h - Ey).

Hence the error e =y — y is estimated by

1€ Ml

lefloc < 7= - 1E|\OO(H lloo + 1ol [l o0)

Since the exact solution y is bounded by the maximum resistivity, and F and h are bounded

by (6.4), the error is estimated by

1€ oo

o0 < =51

HG L HG | HE L HET DL (6.6)

<z

where R is the maximum resistivity. Hence the error e decays to zero as the noise of the cur-
rent data converge to zero. Therefore, under the stability condition (6.5), the approximation

error of the method is uniformly bounded by (6.6).
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