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ABSTRACT

In the thesis, interior conductivity reconstruction problems inferring from the interior current den-
sity data are considered. It is our main result that an anisotropic conductivity reconstruction in two
dimensions is well-posed. This is relevant to an application of a medical diagnosis on human organism
since human organism typically has an anisotropic conductivity.

In the first part of thesis, the well-posedness theorems on isotropic, orthotropic, and anisotropic
conductivities are presented. An existence theorem is treated to the same extent as an uniqueness
theorem; The admissibility conditions on the current data that are sufficient to imply the existence of
the solution are defined prior to stating the theorems. They provide sufficient conditions to characterize
differences between arbitrary vector fields and the current vector fields that are realizable electrically.
The main results comes from that we can pose an equation or a system of equations of hyperbolic type
on the solution.

In the second part of thesis, a numerical algorithm to reconstruct the conductivity is suggested.
Isotropic and orthotropic materials can be treated by the algorithm. The algorithm has two advantages:
Firstly, the conductivity reconstruction is obtained by directly solving equations of hyperbolic type
without iteration process. Secondly, numerical approximations of divergence and curl operator are exact,
which is known to be of mimetic type. Since this scheme is realized as a resistive network of circuit theory
in our context, we call the algorithm Virtual Resistive Network algorithm. Propagation of noises and
the stability of the algorithm is investigated. Due to the nature of the hyperbolic problems, the noises
would propagate along characteristic lines without cancellation. The numerical scheme composed by the

mimetic idea turns out to be the one that may relax the hyperbolic nature of noise propagation.
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Chapter 1. Introduction

1.1 Introduction

This thesis is about the conductivity construction problem inferred from the interior current density
data. The most important concept in this thesis is the Ohm’s Law which states the existence of the

linear relationship between the electric field and the current density field in the following form.
J =0E.

The proportionality o is called the conductivity at the point. This constitutive law is known to be good
deal exact in a wide range of materials even in the nano scale.

The conductivity value is supposed to persist under the extent variance of the environment, in
particular when the undergoing electro-magnetic phenomena is close to the static case. Then we could
refer the value as the intrinsic property of the material. In such a case the conductivity can give or
suggest information on the status of the material as in the cases we infer information from various other
properties via X-ray, Ultrasound, CT, and etc.

The conductivity possibly changes both the magnitude and the direction of the loaded vector E.
The direction cannot be reversed however, more concretely, the change of the angle cannot exceed 7.
In d-dimensions, it is also assumed that there are d principal directions, orthogonal to each other, and
d possibly distinct corresponding conductivity values such that an E in one of those directions becomes
an eigenvector of the conductivity with the corresponding conductivity value as eigenvalue. Hence the
conductivity is set as a symmetric and positive definite matrix for each point. As a special case, when
all the d eigenvalues agree, i.e. when the conductivity matrix is a scalar multiple of identity matrix, it is
said to be isotropic. The conductivity is anisotropic if it is not isotropic. For a given body occupying a
region Q C R?, the conductivity is therefore the matrix field. If the conductivities in €2 is simultaneously
diagonalizable, which is in general impossible, we call the field the orthotropic conductivity field. In such
a case we may choose a coordinate system in which the field is the diagonal matrix field.

Once Ohm’s Law is admitted, the overall electro-magneto-static phenomena in a given body 2 is

determined by the following single equation

V- (cVu) =0, (1.1)
—oVu-n=g, (1.2)
where u is a potential for the electric field so that E = —Vu and hence J = —oVu. g is the normal

component of current on 02 controlled by for example electrodes attached to the body. g has to satisfy

Ju =
o0

in order the equation to be solved. Other fields such as magnetic field and charge distribution then are

the condition

determined by the maxwell’s system of equations.
The conductivity for each point can be determined by measuring at least d J vectors caused by d

linearly independent E vectors at the point. This is in fact over-determined because the conductivity is
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symmetric furthermore. In many cases however, one cannot directly contact the interior point as one
cannot in X-ray, Ultrasound, CT, and etc.

One therefore seeks a quantity that is equivalent or sufficient in ability to determine the conductivity
for all points of the domain. The inferring process is typically formulated as solving an inverse problem.
One most classical such quantity is the Dirichilet to Neumann map, the DN map for brevity. It is a map
corresponds the voltage profile on the 92 to the normal component of the current profile on the 99Q. It

is well-defined because the equation (ILI]) with respect to the boundary condition
ulpq = f (1.3)

consists a well-posed problem. Hence there is the unique normal component of the current on 02 for
each voltage profile f. Equivalently, one may consider Neumann to Dirichile map, or ND map.

Studies to infer conductivity from the DN map has been studied since eighties and now it becomes
classical. The related technique is known to be Electrical Impedance Tomography (EIT) in the literature.
See [1], [2], and [3]. For a given domain  C R, it is well-known that, for instance as in [4], this map,
which is a function of 2 and o, has sufficient information to determine the interior isotropic conductivity
when d > 2. It is also fact that one can generate infinitely many anisotropic conductivity fields whose
DN map is identical to the one of a certain isotropic conductivity field. In other words, DN map does
not have a resolution to distinguish anisotropic conductivity fields.

The one we infer information from in this thesis is the interior current density. Questions how one
measures such data without destructing the body is referred to papers concerning techniques of MRCDI,
[5] and [6]. The purpose of this thesis is to give mathematical background for the theory. The related
technique is known to be Magnetic Resonance Electrical Impedance Tomography (MREIT). See [7], [8],
[9], [10], [11], [I2], [13], [14], [15], [16], [17], [A8], [19], [20],[21], [22], [23], and [24]. Other problems that
make use of internal measurements are [25], [26], [27], [28], [29], and [30].

Main theme we can see in the thesis is the powerfullness of making use of interior data, which

appears in the following formal statements we are going to advance.
1. Three current density data determine anisotropic conductivity uniquely.

2. Furthermore, the information is exact such that the problem is neither under-determined nor over-

determined so that we can construct the one solution for the data.

3. The construction process is undergone by the solving a single or a system of partial differential
equations of hyperbolic type according to the type of the conductivity we are assuming, in which
we are saying that it is not a case of typical inverse problem. Since a hyperbolic partial differential
equation is solved stably under the changes of initial-boundary data and the coefficients, and they

come from the current density data, the conductivity is constructed stably for the given data.

In other words, we are stating that our concerned problem is well-posed.

The thesis consists mainly of two parts. In the following chapter, we present the theorems stating
partial of full well-posedness of the construction problem with respect to isotropic, orthotropic, and
anisotropic conductivity field. The other chapter is devoted to the study of numerical algorithm which we
referes to as the Virtual Resistive Network algorithm. It constructs isotropic and orthotropic conductivity
from discretely sampled current data.

Before we close this section, we specify one particular interpretation of the study. Sometimes the

conductivity problem is connected to the purely mathematical questions in Riemannian geometry. This
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is due to the fact that the Laplace-Beltrami operator in a Riemannian manifold with a metric g reads

d
1 ..
> ——0i(Vlglg? du) = 0,
ij=1V |g|
where the conductivity does a role as a /|g|g"/ in the equation (LT)) of a same structure. Here |g| is the
determinant of g, and g% is an ij entry of g~!. More concretely, v/|g|g¥ originates from the Hodge-star

operation * on a 1-form,
* (Ej da?) = €k k. kg 1si |g|gijE]— dzkt A da® A LA dakar

where €i, k... ky_1.i 15 the d-dimensional Levi-Civita symbol. Thus the multiplication of the conductivity

is the Levi-Civita detached Hodge-star operation. The Ohm’s Law in this interpretation can be reads,
Wy = * WEg,

where (W1)ky ko kyos = €k1kor.ka_1id’s and (wg); = EJ, and J7 and E’ are the components of J
and E. wg becomes a harmonic 1-form and w; becomes a harmonic (d — 1)-form due to the governing
equation (L)) and maxwell’s equations.

Suppose we declare the several (d — 1)-forms to be harmonic. Then one can ask whether there is a
metric g by which the (d — 1)-forms are indeed harmonic. We will present a partially positive answer
when d = 2 in this thesis.

1.2 Ohm’s Law and Irrotationality of Electric Field

Let us begin with emphasizing an importance of the equation (II), the incompressibility of J
combined by Ohm’s Law. Together with a boundary condition (L2) or (3], the equation has the
unique solution u, and consequently E and J are determined. From E and J, other quantities describing
the whole electro-magneto-static phenomena are fixed in principle by maxwell’s equations (See Appendix

for a list of quantities in maxwell’s equations). For example, two of maxwell’s equations are

VxH=J inQ,
V- (uH)=0 inQ,

where p is the permeability, and H is determined with an appropriate boundary condition. We may also
fix the displacement field D, the charge distribution p¢ under supplements of appropriate information.
In summary, the equation (I[I]) the incompressibility of J combined by Ohm’s Law is the very core of
the whole phenomena, which is an equation of what we call the forward problem. Our inverse problem
is the one relevant to that forward problem.

At this point, let us look up a work of Richter [26], which considered a kind of an inverse problem for
isotropic conductivity from the information of interior potential w. His original work in fact concerned
a more general situation and motivated from other context, but let us apply the result for our simpler
case and keep using electro-magnetic terminology. If the equation (1) is expanded in two dimensions,

since o is isotropic we obtain
(05u)0p0 + (Oyu)dyo + (O3u + 8§u)a = 0. (1.4)

Expressions in parenthesis are known coefficients here to solve above equation for o. The above is an

linear first order equation and is solvable on where the method of characteristic is applicable.
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Now let us return to our problem making use of J, not E. One immediately realizes that the
incompressibility of J does not anymore supply an equation for o, but it is a necessary condition for a
given data. Until 2002 therefore, an iterative structure to solve the inverse problem was studied. The
equation (LI) to solve for u and the Ohm’s Law to calculate J from it are alternatively used in each
iteration in the following way. First, an ansatz for the conductivity is specified. Then, one solves (]
with the ansatz for E and J. The resulted current would be different from the measured data, and
one devise an algorithm to update the conductivity ansatz from that inconsistency. This procedure is
iterated.

Comparing to the problem of Richter, this procedure is severely non-linear and is hardly analyzable
mathematically; the non-linearity is to invert an elliptic operator in every iteration.

Now consider the Ohm’s Law in a form of E = rJ. r = 0! is the resistivity. We consider in this

thesis only an invertible conductivity. Then, one may consider an equation of
0=V x (rJ) = (JY)0ur + (—J")Oyr 4 (8:JY — 8, J")r. (1.5)

Observe that r is solvable by method of characteristic with a single J datum, similarly as done in
the Richter’s problem. Ider et. al. [15] and Lee [18] found the identity (LI) useful in devising their
algorithms. In fact, they made use of two current density data.

What we are trying to do here is to set up a new suitable framework. V x (rJ) = 0 is more than
the useful identity; it takes its role in the whole electro-magneto-static phenomena as equivalent as (.T])
does. As a consequence of this criticality, throughout this thesis we are going to define our forward

problem as following elliptic system.

Vx(rJ)=0 inQ, (1.6)
V-J=0 inQ, (1.7)
with a Neumann boundary condition
J-n=g ondN. (1.8)
or a Dirichilet boundary condition
rJ-T=f ondQ. (1.9)

This system is well-posed and thus it determines J and E uniquely. Equivalence in abilities to ()
follows from this fact and the earlier discussions in this section. Note that it is emphasized in the system
that the electric field in a form combined by Ohm’s Law is irrotational, and what appeared explicitly in
the Ohm’s Law is the resistivity rather than conductivity.

In summary, this thesis is about an inverse problem to construct the resistivity that is relevant to a

forward problem (LG)-(T3).



Chapter 2. Well-posedness of Resistivity

Construction Problem

2.1 Preliminaries

In this section, we collected what are shared in the analysis of this chapter. They are not the
author’s original work but they can be found in the literature.

Q C R? is a simply connected bounded domain with smooth boundary. Let J be a smooth vector
field defined in Q. If V - J = 0 throughout the domain, we define a stream function v of J such that

g %
~9u )

The stream function is unique up to an addition of a constant.
Correspondingly, if E is a smooth vector field in Q such that V x E = 0, we define a potential u
such that
E=—Vu.

We may express Ohm’s Law as

Wy =—0 b or r Yy = (™ .
() lo) () ) e

in which the irrotationality of E and the incompressibility of J are built-in.

Now for a given Neumann boundary condition g, the potential u is a solution of an elliptic equation
V- (oVu) =0, inQ,
—oVu-n=g, on Jf.

The current field J and its stream function v is related by (Z1]). From

)=o) )0
)= o) ) =)

0 -1 0 1
where s := Lo ) r < ) 0). It is also a symmetric positive definite matrix field. Observe that the

left-hand-side is divergence-free. Hence

we may write

We may also check that



The boundary condition

g=—-oVu-n= (wya _wz) ) (nlan2) = (%,%) ) (_n%nl) =Vy-T,

where T is a unit tangent vector along the boundary counter-clockwisely. Define v(¢) : [0, L] — 0%, an
embedding from an arc-length parameter ¢ to the boundary 92, where L is a total length of 9€2. Then
one can integrate the Vi - T = ¢/ (y(¢)) to have

4
v(0) = GO = [ abear.

Since an addition of a constant to the 1 does not change physics at all, we fixed ¥(y(0)) = 0 in the
formula.

Hence if u is a solution of an elliptic equation with a Neumann boundary condition g, then the
induced stream function v is a solution of an associated elliptic equation with Dirichilet boundary

condition G as below.

V. (sVY) =0, inQ, (2.2)
=G, on Q. (2.3)

In conclusion, the first order system (G- (L) reduces to a single divergence type second order equation

22)-[2Z3) in two dimensions.

Remark 2.1.1. Note that in the 22)-23)), the stream function 1 appears as if it is a potential. Hence
for the isotropic conductivity in two dimensions, this problem reduces to the problem of Richter [26] that

makes use of a potential datum.

Now, we list a formula under a change of coordinate system. Suppose (£,n) is an another coordinate

chart on the domain. From chain rule,

(902 903 (-0
—g Nz &z *7/15 7 Uy fy My Un ,

and from Ohm’s Law
1 ( Ny 771) r ( Ty gy) < "/’n) _ <u§> )
gxny - nxé.y —fy fz Nz €m _1/15 U

Define R := ———— O r T~y , then R is a symmetric positive definite matrix field
EaMy— N8y _ _
fy & Nz &

and we have a version of an Ohm’s Law

Yy | e
R(wj () 2.

0

0 -1 1
in the (£,7) coordinate system. We may further define S := (1 0 ) R < 0) similarly as before.

Note that one of o, r, s, R, and S fixes remainders, so we may construct one of them.

Lastly, the following is a result in [31] that is frequently cited in this thesis.



Lemma 2.1.1 (Alessandrini, 1987). Let a;; € CY(Q), b; € C(Q), 4,7 = 1,2 and let g € C(Q). Let
u € W2.(Q)NC(Q) satisfy

2 2
E iU, + g biug, =0, in €,
i,j=1 i=1

u=g, on Q.

Q C R? is a bounded simply connected domain.

If gloq has N mazima (and N minima), then the interior critical points of u are finite in number

and, denoting by my,--- ,mg their multiplicities, the following estimate holds
K
> mi <N -1
i=1



2.2 Well-posedness of Isotropic Resistivity Construction Prob-

lem
In this section, we try to solve a following partial differential equation

Vx (rF)=0, inQ, (2.5)
r=rg, onl CIN.

for a real-valued function r : Q — RT, with respect to the coefficients F and an initial condition 7
defined on a portion I' of the boundary. We denoted the vector field by F instead of J to give a certain
generality to the datum.

As discussed earlier, this linear equation is solved by the method of characteristic. Resistivity on
where is covered by characteristic lines emanating from the I', will be determined by the method. Here,
we want this process to be precise: we are going to define a condition on the datum and the initial surface
T" so that the family of characteristic lines behave nicely enough so that we determine the resistivity on
Q) exactly. On the while, we relax the condition on the datum as much as it could be.

Let us first examine that from what kind of datum we may construct a physically meaningful
resistivity. Noise possibly breaks the divergence-free condition for example, or V - F = h. This is indeed
the cases we encounter in practice, but the existence is hardly questioned. We cover the case as the one
when there is an internal source h.

Recall that our problem has an interpretation to find a metric after declaring a certain field to be
harmonic. In two dimensional case, the stream function v is declared to be harmonic, i.e. it is a solution
of an equation of Laplace-Beltrami. It is obvious that arbitrary stream function cannot be the one, it
cannot have interior maxima and minima because of maximum principle, and cannot be a constant in
an open set because of the Unique Continuation Property for instances.

On the other hand, if a stream function, or F, is generated from a given resistivity, then there neces-
sarily exists a solution for the datum. However, it is a different issue whether the family of characteristic

lines defined from the one has sufficient resolution to recover the information.

2.2.1 Admissibility of Datum

Motivated from preceding discussions, let us define an admissibility as follows.

Definition 2.2.1 (Admissibiliy 1). Consider a two dimensional vector field F = (f*, f2) € C»%(Q) for
0 < a < 1. Denote I't := {x € 9Q|F*+ -n(x) > 0}, I'" := {x € 92|F+ -n(x) < 0}, IV := {x €
O |FL - n(x) = 0}, where FL := (—f2, f1). The vector field F is called admissible in this section if
F #0 in Q and T'F are connected. Also T'™ is called an admissible boundary.

The geometry of boundary is illustrated in the Figure[2Za). We are are excluding cases for example
the one in Figure [ZI[b), where I'~ has several connected components. Both of them are actually
realizable electrically. Let us explain the consequence of the connectedness of I'". Suppose ¢ has a
jump discontinuity. Then in general it is detected by F by the jump of the tangential component of
the current F along the discontinuity. If the discontinuity occurs along an equipotential line, where the
tangential component of F vanishes, it is not detected by F. However, it can be proved that the very
equipotential line has to intersect a boundary. If the intersection point is in the interior of I'", then the

jump discontinuity is detected by the jump of initial data ro. Even when rg does not have a jump, if g
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(a) Admissible boundary (b) Not an admissible boundary

Figure 2.1: Domain Boundary: The boundary of the domain is divided into four parts depending on the
given admissible vector field F in the sense of Definition 2211

is defined on several disjoint sets, it is allowed to have a jump discontinuity along the equipotential line
emanating from boundary between the sets. In short, if '™ has only one connected component, then the
jump discontinuity has to cause the jump in either F or rg. Hence the admissible datum is the one that
is well-designed to recover information on conductivity, and is more than the one that is realizable.

In the end of this section, we contained a theorem stating that the condition is achievable only by
controlling a boundary condition. This is a consequence of Lemma [2.1.7] of Alessandrini, and the proof
can be found in the literature, for example in Nachman et. al. [19]. For a completeness we provided the
proof.

Now we investigate the consequences of the admissibility. Let C be a family of integral curves of the
vector field F+. The integral curve extended from xq is a solution of the ordinary differential equation
(or ODE for brevity)

d
Ex(t) = F+(x(t)), x(0)=x¢, —oo<t<o0. (2.6)
In the following lemma we quickly summarize elementary properties of integral curves of a non-vanishing

C' vector field in a compact domain .
Lemma 2.2.1. If X € CY(Q) and X # 0 in Q, then
(i) Integral curves of X do not touch other ones nor themselves.
(ii) The length of an integral curves of X is uniformly bounded.
(iii) Both ends of an integral curve of X are extendable to the boundary.

Proof. Let x¢ be a tangential or intersection point of two different integral curves. This implies that
there exist two solutions of ([Z.6) locally at xo. However, X is assumed to be C! and hence it contradicts
to existence of unique solutions to such ODEs and hence we obtained the first assertion.

The second assertion depends on the assumption X # 0 in Q. Suppose that there is an integral
curve x(t) which is infinitely long. Then, since the domain € is bounded, there exist nonempty limit
set w(x). Since there is no critical point, Poincare-Bendixon implies that w(x) is a periodic orbit. This
implies that there exists a critical point in the interior of the orbit, which contradicts to the assumption
X # 0 in Q. Therefore, all the integral curves are finitely long. Since  is compact, they are uniformly
bounded.



Since ) is compact and |X| > 0 on €2, there exists a lower bound a > 0 such that
| X|>a>0.

Suppose that an integral curve x(t) converges to an interior point y € Q as t — co. One can easily see
that this is not possible since the speed of the curve is uniformly bounded from below, i.e., |x'(t)| =
| X (x(t)| > a, the curve cannot stay in a small neighborhood of y forever. Therefore, the integral curve

x should connect two boundary points of 0f2. |

In the following lemma, the connectedness of I'~ implies that all the integral curves should connect
the boundaries '™ and I'".

Lemma 2.2.2. If F is admissible, then the integral curve of F- that passes through an interior point
xo € Q starts from T~ and ends at T". There exists T > 0 a uniform upper bound of the domain size of

integral curves.

Proof. Since the vector field F is assumed to be admissible, the boundary 92 is divided into four parts,
o0 =T"UTYuT*tUTY, where FL - n(x) =0 on I'? (see Figure 21)).

Note that each T'Y is a single point or is an integral curve of F by definition. From Lemma 2211 we
know that the integral curve that passes through an interior point x( is unique and has two end points

on 0F), i.e., there exist t_ < 0 < ¢4 such that
x'(t) =FH(x(t)) for t_ <t<ty, x(t_),x(ty)eoN.

Since x'(t-) -n < 0 and x/'(t4) -n >0, we have x(t_) e I~ UTYUTY and x(t4+) e TYUTY UTY. If any
of IT'?’s is not a single point, then they are integral curves by definition. Since two integral curves do not
intersect with each other by Lemma 2.2l we can conclude x(t_) € '™ and x(¢;) € 't and first part of
proof is done.

Suppose that I'{ is a single point and x(¢_) € I'{ as in Figure Then, x(ty) € TTUTY. If T is
not an single point, then, by the same reason, x(t,) € I'". In any case, x(t4) € It \ T'Y. Let yo be an
interior point of a region surrounded by the integral curve x(t), t_ < t < t,, and I'". The integral curve
y(t) that passes through the point yo should start from I'~. Therefore, the integral curve y(t) should
intersect the integral curve x(t), which contradicts to Lemma 221l Therefore x(t_) & I'{ even if I'{ is
a single point. Similarly x(t_) € I') and hence x(t_) € I'". The same arguments also gives x(t4) € I'"
and the first part of proof is complete.

Since the |F*| is uniformly bounded below away from zero and the length of an integral curve is
uniformly bounded, there exists T' > 0 such that the domain size of any integral curve is less than T,
ie.,

t, —t_ <T,

which completes the proof (|

We will always consider an admissible vector field in Definition Z2.1l The boundary I'™ is assumed
to be smooth, where the curve v : [0,L] — '~ is C?>®. We will write the whole set of integral curves
appeared earlier into a mapping of two parameters, such that
0
&x(s,t) =F*(x(s,1), x(5,0)=7(s), 0<s<L. (2.7)
The domain of the mapping x is a the closure of a bounded open subset E C [0,L] x [0,T]. In the

following lemma we will see that the mapping x gives a new coordinate system of the problem.
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Figure 2.2: An illustration for the proof of Lemma [2.2.2]

Lemma 2.2.3. Let F be admissible. Denote ' := Q\ T°. (i) The mapping x : E — Q defined by the
relation [20) is a homeomorphism. (ii) Furthermore, its restriction x : E' — Q' is a Ct-diffeomorphism,
where B = x~ ().

Proof. Lemma 2211 implies that the mapping x : £ —  is one-to-one. If not, x(s,t) = x(s',t') for

some (s,t) # (s',t'). This implies that an integral curve is touched by another one, if s # s’, or by itself,

if s = §’. Then, it is against Lemma 22.1)(¢). Lemma implies that Q' C x(E). To show x is a
surjection, it is enough to show that I'{ and T'J are actually integral curves x(0,-) and x(L,-). If each
of them is a single point, then we do not need to be bothered. If not, we already know from Definition
221l that they are.

Now we show that x is continuous. In fact we will show that it is Lipschitz. Consider
[x(s,t) —x(s', )] < |x(s,t) — x(s,t")| + |x(s,") — x(s,t')].
The first term is estimated by
[x(s,t) = x(s,8')| < |0ix[[oct = '| < [|Floo [t —'|.
To estimate the second term, we first consider

o (s, t) X 0)l| = B x5, ) — B (', 1)
< | DF|l x(s,#) = x(s',)].

Therefore, Gronwall’s inequality gives, for C' = eTlIPFll

x(s,t) = x(s',t)| < Clx(s,0) —x(s",0)]
= Cly(s) —(5)]
<Ol Is = 5'|-

Combining these estimates, we have, for some constant C > 0,

|x(s,t) —x(s',t)] < C|(s,t) — (s, 1)) (2.8)

Furthermore, since x is a continuous bijection from a compact set to a compact set, its inverse is also
continuous and hence x is homeomorphism.

Differentiability of the mapping x(s,t) in s and ¢ variables in E’ is well-known from ODE theory
(see Theorem 7.5 in [32] on pp.30 and remark on pp.23). We now show the differentiability of x~! on
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Y. To do that it is enough to show that the determinant of the Jacobian matrix Dx(s,t) is not zero on
E’. Differentiating (Z71) with respect to ¢ and s gives

D10sx(s,t) = DFL(x(s,1))0sx(s,1),
0:0rx(s,t) = DF*(x(s,1))0:x(s, 1),
which can be written in terms of Jacobian matrix as
O:Dx(s,t) = DF*(x(s,t))Dx(s,1).

Therefore, the determinant of the Jacobian matrix is given by

x(s,t)| = |Dx(s,0)| ex t r L(x(s,7))) dr
[Dx(s. )] = |Dx(s,0) exp ([t (DF* (x(s,7) ).
(see Thoerem 7.3 in [32], pp28). On the other hand,

‘DX(S’O)’ = HaSX(S,O),GtX(S,O)” = 7/(5) X FL(W(S))-

Since F1(vy(s))-n < 0 for v(s) € T~ and 7/(s) -n = 0, F*(v(s)) and +'(s) are not parallel to each other.
Therefore, | Dx(s, 0)| # 0 and hence | Dx(s, t)| 0 for all ¢ > 0 for all (s,t) € E’. O

Theorem 1. Suppose the conductivity o € C1%(Q), a symmetric positive definite matriz field is given.
Then there is a choice of Dirichilet boundary conditions f, such that J = —oVu is admissible, where u

is a solution of an elliptic equation

V-(eVu) =0, inQ,
u=f, onOf.

Proof. The proof can be found in [I9]. Let v(¢) be the embedding of 9 as before. Choose f(vy(¢))
that is strictly monotone except on the unique maximum and minimum. Then by 2.T.0] Vu # 0 in the
interior and hence J # 0 in the interior. The only points where u attains maximum and minimum are the
possible critical points, but by Hopf’s Lemma, Vu -n # 0 at there. Since J* -n = (—J!, J?) - (ny,n2) =
(JY,J%) - (=n2,n1) = —oVu-T, T~ is where u(y(¢)) is strictly increasing. By the definition of f, it has

only one connected component. O

2.2.2 Main theorem

Now we are ready to prove our main result on the isotropic conductivity through the following

theorem.

Theorem 2. Let Q be a bounded simply connected open set with C*® boundary. Suppose that an

admissible vector field F € C*(Q) and a boundary resistivity ro € C%*(I'~) are given. Then,
(i) There exists a unique r € Cox*(Q) N CO(Q) that satisfies ([ZT).

loc

(i3) Let 7 be the solution for an admissible vector field F with T~ =T~ and a 7y € C%*(T'). Then,
I = Fllz@) < € (o = Foll ey + IF = Fllergy) +w(IF = Flleqe ), (29)

where C = C(||F | 1.0, ||F||Cl,a(g), [7ollco.e s IFollco.a () and w(x) is the modulus of uniform

continuity of T.
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The unique existence and the regularity is rather easily obtained from the method of characteristic
and the Lemmas we have proven. The stability part is rather long but is a successive application of

triangle inequalities.

proof of Theorem[@ Let x : E — Q be the homeomorphism in Lemma [2.2.31 Then for any x¢ €  there
exist 0 < s9 < L and 0 <ty < T such that xg = x(so, o), i.e

0
Ex(so,t) = Ft(x(s0,t)), 0<t<T,
x(80,0) € T,  x(s0,t0) = Xo.

If r is smooth, then we have following equivalence relations.

VX (F) =0 (rf?)s— (rfl)y =-F"-Vr+(ff = f))r =0

— ——r(x(s,t)) + (VxF)r=0 (2.10)
=V x F(x(s,1)).

Therefore, the resistivity r at xo = x(sg, to) should be given by

r(x0) = r(x(50, 0)) exp (/Ot V x F(X(SO,T))dT). (2.11)

Since the relations are equivalent this is the unique weak solution.

In the following, we will first show that (r o x)(s,t) has the regularity of C%*(E). Then the lemma
will imply 7(z,y) € Cpo(Q) N CQ) as in statement of theorem [ because x~*(z,y) is only
continuous in Q and differentiable merely in €’.

Let x; € Q and x(s;,t;) = x; for i = 1,2. First (rox) (s,t) is differentiable with respect to t variable
by @I0O). Also, x(s,t) is Lipschitz and ro(s) is holder continuous on the boundary I'~ with respect
to s variable, hence their composition map s — r(x(s,0)) is also holder continuous with respect to s
variable. Similarly, the map s — e( J§° VX F(x(sim)dr) is holder continuous and hence r in ([2Z2IT]) is holder
continuous with respect to s variable because it is given by the product of those two maps. Therefore
rox € C%*(E) and hence r = roxox~' € C¥(Q) N CO(Q).

Now we show the stability, the second part of Theorem [l Let F be another admissible vector field
and x: £ — Q and 7 : Q — R be the corresponding diffeomorphism and resistivity, respectively. We
assume '~ = I'~ and x(s,0) = (s, 0) for s € [0, L] for here, which means the boundary measurements
are same. We will show (Z9)), for a fixed compact subset K C . Let xg € K be fixed and xo =

x(s0,t0) = %X(30,%0) where At :=t5 —tg > 0 (see Figure 23 for an illustration). Consider, for t € [0, %],

|0ix(s0,t0 — t) — 0% (50, o — 1)
= | = F*(x(s0,t0 — 1)) + F(%(50, 0 — 1))
< | = F(x(s0,t0 — 1)) + FH(x(s0, to — 1))
+ | = F(x(s0,t0 — 1)) + F(%(50, 0 — 1))
x(So

<|IF = Flloc + [[DFloc|x(s0, to — t) = %(30, 0 — |-
Therefore, Gronwall’s inequality gives, for 0 < t < tg,
|x(s0,t0 — t) — %X(50,%0 — )| < C||F — F|so, (2.12)
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Figure 2.3: This figure is used as an illustration in the stability proof.

where C' = tgetol DFllss
Denote x; := X(s0,0) € I'™, %1 := %(30, At) € Q, h(t) := V x F(x(s0,t)) and h(t) := V x F(x(50, t +

At)). Then, from (ZIT),

r(xo) = r(x1)elo’ MO 4 f(xg) = (%y)elo” MEHAO
Hence,

[7(x0) — 7(xo0)|

< ‘r(xl)ef()m h(t) dt _ T(Xl)efoto h(t) dt + ‘T(Xl)efoto h(t) dt _ f(il)efoto h(t) dt}

13 to 1 to 1
e O h(t) dt _ erU h(t) dt O h(t) dt

+ [r(x1) — (x| e

t to =+ to 5
< lrollcorr-y max (efoo @) dt - efo® () dt) }/ h(t) — h(t) dt‘
0

+|T(X1) o ;()El) e fo h(t) dt’

< (b= hlloe + 1) — 7)1

where C' depends on the quantities that the coefficient in (20) does. Now we estimate the two terms
separately.

First, we have

r(x1) — 7(%1)| < |r(x1) — #(x1)| + 7(x1) — 7(%1)]-
< |lro = Folloe + w(|x(s0,0) — %(50, At)])
< |Iro = Folloe + w((C1[|F — Flo)),

where, in the second inequality, w(x) is a modulus of uniform continuity of 7. Also we used the fact that
x1 = x(80,0) = X(s0,0) € I'". Eq. ([2I2) is used in the last inequality.
The other term is estimated by

[h(t) = h(t)] < |V x F(x(s0,1)) = V x F(X(50,t + At))|

< |V x F(x(so,1)) — F(x(s0,1))|

IV x Fx(s0,) — V % B(%(0,  + AD)|

< P = Fllos @y + [DFlon g (0, 1) — (o, ¢ + A0

< ||IF —Fllci () + [DF] o @) (CLlIF — Fllo)®,

<l<]<l
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where estimate (2.12)) is used again. Therefore we have

|r(x0) — 7(Xo)|
< Cu((CRIDF) oy + 1) + (CF [Flove sy + 1))
(Imo = Folloo + IF = El + IF — Fllcra ) (2.13)

< ¢ (lIro = Folloe + IF = Flls g )-

From calculations C' = C(HF”CLQ(Q),HFHCI,@(Q), [70llco.e (@, [IFollco.a ). Here we assumed ||F —

Voltage construction

Now let us construct the voltage u from constructed r. It is well-defined up to an addition of a

constant. If » € C1(Q), then the existence of u that satisfies

~Vu=rF in Q (2.14)
is clear. Even if r € C%%(f) as in our case, the existence theory of such a u € H*(f) is classical (see
Weyl [33]). Since —Vu = rF in ©, we conclude u € C%() N C1(Q).

We can also directly construct the u. Define @ : E — R by

(5,0 = / () E((7) -+ (7).
(s, t) = u(s,0),

and u:Q — R by v =aox"'. Then, one can easily see that —rF = Vu in Q.

The optimal regularity of r

We obtained in Theorem Bl that r € Cp.% () N CO(Q). Also is true for o if r is away from 0. If
ro > 0, since the exponential term in ([2I1)) does not alter the sign, hence r > 0 in 2. r has minimum
in the compact domain thus is away from 0. Thus we will freely use r or ¢ for discussions.

We will show that the regularity cannot be improved. For a forward elliptic problem, o € C%%(Q)
guarantees J € C1%(Q) and 0 € CH¥(Q) guarantees J € C1¥(Q) without boundary estimate. Our
theorem says that the above sufficient conditions are not necessary conditions. We lose one derivative
interior and even hoélder continuity on boundary because sometimes less regular conductivity gives a
regular J. We have following examples.

First, we will show that we lose hélder continuity of o on boundary, i.e., » ¢ C%%(Q) in general.

Consider an example,
y
r(z,y) = fly) >0, wulx,y):= —/ f)dy'.
0

This is an example of one dimensional electrical current in two space dimensions and one can easily check

0
Jz—aVuz(),
1

which is analytically smooth. Consider a domain given as in Figure 2.4(a), where a part of its boundary
is along the line y = —1. According to Definition EZ2Z1] this part of boundary belongs to I'°. Set
f(y) =1+ |y+1|%. This certainly does not belongs to C%*(€2) but belongs merely to C2% (). Note

loc

that the electrical current is
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example

Figure 2.4: These illustrations are used to show the optimality in regularity theory.

that ro € C%%(I'"), provided the curve at the corner of boundary is set as in Figure 24a). One
might even consider a discontinuous f, but this case is excluded by an assumption of Theorem Pl that
ro € C%%(I'"). We are considering a classical Schauder theory. In the case r ¢ Cp* ().

In the next example we will see we lose one derivative inside of Q, i.e., r & Cloof(Q) for any g > «.
Let the domain be given as in Figure 2.4] (b) and let
! 5 >0, wu(z,y):= 7 5
(1422 (1 +)) (141t 1+ )

1
J=—-0Vu= y
—2x|z|2

which is C1%(Q). However r € C%*(Q') but r ¢ C%#(Q') for any 8 > .

One might wonder an assumption in theoremlthat ro to C%(I'~) is a source of lowering regularities.

r(z,y) =

Then, the electrical current is

However "
r(x0) = r(x(s0,0)) exp (/0 V x F(x(sO,T))dT),

and the regularity of r depends also on the the vector field F, hence increasing the boundary regularity
of rg to C*(T'—) for k > 1 does not improve the regularity.

In summary, we optimally answered to the inverse Schauder solvability for o(z) and its by-product
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2.3 Well-posedness of Orthotropic Resistivity Construction Prob-

lem

In this section, we assume that the resistivity is diagonal matrix field in a single coordinate system,

1
rt 0
ie r= <0 2) . We try to solve a system of two partial differential equations
r

Vx(rFi) =0, i=1,2, inQ, (2.15)
rt =7}, onT!cCoQ,
r? = r%, on I'? € 09,

with respect to the coefficients F; = (F7, F}) and an initial conditions ré defined on a portion I'* of the
boundary for i =1, 2.
From expansion of ([2I5]), we have

FY(0,1%) = FF(9yr') + (0.F))r* — (8, F})r' =0, i=1,2.

-1
1 _F= Fy Fr Fy 1 1
Oyrt _ R Oy Fi O FV N\ (7 ::A<Fi,VFi) r 7 (2.16)
Opr? —-Fy FJ Oy Fy  —0,Fy r2 r2

Or

—-Fr FY
provided that the matrix Flz F1y> is invertible. Thus we need the determinant F; x Fo # 0, i.e.
—I'5 2

the two vector fields are not parallel in any of the domain.
. . . . . _ +
These are two waves propagate along x-axis and y-axis respectively. If wants, by introducing t = %2

and s = %5¥, the system can be written in the conventional form,

(at — as)rl B _ _ rl
((& + 05)r? B A(F“ VFZ) r2 )’
2.3.1 Admissibility of Data

_F1$

The invertibility of ( ) naturally induces the definition of admissibility for orthotropic

Yy
1

5 F

conductivity construction problem.

Definition 2.3.1 (Admissibility 2). Let Q C R? be a simply connected bounded open domain. Two

smooth vector fields ¥;, i=1,2 are admissible in this section if F1 x Fa # 0 in Q.

The following theorem can be found in literature for example in [I7]. Here, we present a simpler

proof for a completeness.

Theorem 3. Suppose the conductivity o, a symmetric positive definite matriz field is given in Q. Then
there is a choice of Neumann boundary conditions g*, i = 1,2, such that J* = —oVu' are admissible,

where u’ s a solution of an elliptic equation

V- (oVu') =0, inQ,
—oVu'-n=g" on ON.
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proof of theorem[d We may show the existence of two Dirichilet condition G?, i = 1,2 for ¥ with the
associated elliptic equation ([Z2)) so that J* are admissible.

Let the total arc length of the boundary L = 27 without loss. Let G!(£) = — cos¢ and G?(¢) = sin /.
Then for both of G' and G?, there is only one local maximum along the boundary. Since the boundary is
assumed to be sufficiently smooth, one can extend G, i = 1,2 into the Q smoothly. It is clear that only
the local maxima along the boundary can be local maxima of extended functions along the boundary.
By Alessandrini 2.1, V! and Vi? are non-vanishing in Q. By Hopf’s lemma, V1)* # 0 along the
boundary. We claim that Vi)' x V4?2 also is non-vanishing in 2. Suppose not. Then there is a point
xo such that Vil(xg) = ¢V1?(xp) for some constant ¢, which is finite since ¢* € C'. Now consider
¥ = ! — eyp? which would have x¢ as its critical point. By linearity, ¢ is a solution with boundary
condition ¥|pq = — cosl — csinl = —/(1+ ¢2)sin(€ + £.) for some £,. Since this boundary condition
also has only one maximum, 1& also cannot have a critical point, which contradicts our assumption. Since
J1 x Jy = Vil x V)2, proof is done. O

2.3.2 Main theorem

Our theorem goes with an assumption of convexity of domain for simplicity.

Lemma 2.3.1. Let Q C R? be a simply connected bounded and convex open set with smooth boundary.
Then 02 is a disjoint union of connected curves,
o0 =A)ur; uB)UTT,
= AJuTy; UBYUTY,
such that

(0,1)-n<0, Ty, (0,1)'n>0, I, (0,1)-n=0 inA? and BY?,
1,0)-n<0, inD;, (1,00-n>0, Iy, (1,0)-n=0, in AY and BY.
2 2 2 2

In particular, A is followed by T'; and BY is preceded by T'; in the counter-clockwise direction.

Proof. Let Arg be an angle function of a given vector. We take a branch so that Arg : R? — [0, 27).
Since (0,1) - n = cos @, where § = Arg (n(vy(¢)) — 7/2, the angle between two vectors (0,1) and n, we
have (0,1) - n = sin Arg (n(¢)). Now we define
I = {() € 92| Arg(n(¢
7 ={~y) € 09| Arg(n(¢
AY = {y(¢) € 09| Arg(n(¢
BY .= {y(¢) € 9Q| Arg(n(¢
Since Arg is non-decreasing in convex domain, they are connected sets. Similarly, (1,0) - n = cos#,
where 8 = Arg (n(y(£)). We may define
Iy = {4(0) € 92| Arg(n(¢
Iy ={y(() € 02| Arg(n(¢
AY = {~() € 09| Arg(n(¢
BY = {y(¢) € 9Q| Arg(n(¢

) € [0,7/2) U (37/2,2m)},
) € (m/2,3m/2)},
)
)=

™/2},

)
)
)
) = 3m/2},

In particular, A? is followed by I'; and BY is preceded by I'; in the counter-clockwise direction. O
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Figure 2.5: The geometry of boundary.

Theorem 4. Let Q C R2 be a simply connected bounded open set with smooth boundary. Assume further
that Q is convex. Let TT = {x € 9Q|(0,1) -n(x) <0}, I'J :={x € 9N (1,0) n(x) < 0}. Suppose that

;> ©=1,2 are given. Then there

two admissible vector fields F;, i = 1,2 and smooth functions r§ on T

1
rt 0
erists unique diagonal matrix field r = <0 2) satisfying @I0) such that
r

rtec(@nc'(Q\AuB)) rec@nc'(Q \AJuUBY).

Furthermore, if 7 is the solution for admissible vector fields F; with T~ =T~ and a 75, then
2 ~
I = Fllzey < €3 (I = Tl e ey + IFs = Filloray) (2.17)
i=1

where C' = C(HF”CLQ(Q)a ||F||cl,a(§z)v HTOHCO’Q(Q)v HfOHcU,a(Q))-

Proof. Let I, A, and BY be the ones in LemmaZ3.0] and let I' := I'7 N[y = {y(¢) € 9Q| Arg(n(¢)) €
(m/2,7)}. This is non-empty since 99 is smooth boundary. Since BY is preceded by 'y, (zp,v,) € BY
is the one end point of I'. Also (z4,y,) € AY is the other end point of I'.  Consider an open domain
D enclosed by two lines y = y, and * = z, and boundary portion c in I'. The boundary portion c is
characteristic on both end points and is not characteristic on other points. In this domain, the solution
of ([2.I5) exists uniquely, such that

rt GC(D)HC’l(D \(zq,yq)) r? GC’(D)QCl(D \(xp,yp)).

Well-posedness in D to obtain a solution with above regularity is classical, which is a successive applica-
tion of fixed point argument. The failure of differentiability at the end points is due to the the fact that
the curve c is characteristic on the points. Solution in the rest of domain is obtained by solving Goursat
Problem successively to have the unique solution as in the statement. This process is solved stably under
the perturbation of 7§ and coefficients. Since coefficients in (ZI5]) are functions of F; and VF;, we have

the stability estimates. [l
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2.4 Partial Well-posedness of Anisotropic Resistivity Construc-

tion Problem

In this section, we pose a system of equations on potentials. V x (rJ;) = 0, ¢ = 1,2,3 do not
produce a hyperbolic system of three equations. The entries of r are not anymore eigenvalues for a fully
anisotropic case. One may consider equations on two eigenvalues and an angle of the first eigenvector,
but the analysis goes with non-linearity with them.

We assume that the three vector fields are all divergence-free in this section so that we can define
the stream functions 1, i = 1,2, 3 of them. Thus We denote the data by J;.

In €, three Ohm’s Laws are
B D L TP
4} u

In a region that the first two current vectors are not parallel, where J! x J? = —1/151/13 + 1/151/1; # 0, we

can remove the matrix r from equations,
1 2 1,2
r Yy v)— (Y Ya , or
ot =)\
up up\ (=¥~ 1 (2.18)
r=— _. .
The third Ohm’s Law is then
B uglc ui 71/):% 71/15 1 2 _ ug’
T N B L uy
We substituted r with (ZI8]). We may take curl operator on the both side

AN A AN S S AN
vxl <Ui u2>< v} w;) —GL + U2 <¢g =0 (2.19)

which will remove u? also. It reduces the system to a single equation on two unknowns u! and u2. Now,
since r was symmetric, in the expansion of ([Z.I8]), the two anti-diagonal entries should agree, which gives

us one more necessary equation

uby? —ul? = w2yl — ulyr. (2.20)
Hence we can close the system for two unknowns u' and u?.
In the neighborhood of a point such that J' x J* = —¢ 42 + ¢2¢} does not vanish, the two

stream lines themselves define a coordinate system since —1,b2 + 74} is a determinant of a Jacobian

)-0)

_1/]2 1/11
( N f) of the map (—¢2,41). Let (§,1) = (—2,%1). Then

-2 by
(3)-(2)-0) (33
—0gi —0¢n 0) " \—0ets —0¢(—¢

)

A version of Ohm’s Laws as in (Z4]) gives us

1 2
R 1 0 o [ue ug .
0 1 u717 u%



From the symmetry condition of R, u717 = u?, and we define a scalar ¢ such that u! = ¢¢ and u? = On-

The third Ohm’s law is
1 2 3 3
Y Ue | _ _ [ Ye
uy uy) \ = e

and if we take the curl operator V¢ ,)x on the both sides, what we obtain is,
d’nnué - 7/’&7(“717 + Ug) + 7/155%27 =0.
We omit the superscript 3 in the third data. Finally we obtain

1/’7777‘7566 - 27/’577‘75677 + 1/’66‘75?7?7 =0. (2~21)

Remark 2.4.1. R = D?¢ and Z2Z]) corresponds to 22). A symmetric and positive definite matriz

coefficient in the equation is

0 -1 0 1 0 -1 0 1
R = D%*¢ =S
1 0 -1 0 1 0 -1 0
Also, the first order terms are canceled out in (Z2Z]).

2.4.1 Admissibility of Data

The type of the second order linear equation (Z.21]) is determined by the sign of 1/1?77 —eethyy for each
point. Be careful that the second derivatives of 1 are the coefficients and ¢ is the unknown. On the other
hand, if we regard (Z2I)) an equation for 1) with coeflicients given by ¢, it is an elliptic equation without
lower order terms as observed in Remark 247l It can be shown that any such ¢ has a non-positive

scalar curvature,
VeePmn — wfn <0
by following Lemma. Thus the type of the equation ([Z2ZI)) is fixed to be hyperbolic but possibly degen-

erates.

Lemma 2.4.1 (from Gilbarg and Trudinger). If v is a solution of an uniformly elliptic equation without
lower order terms, i.e.
Mﬂm + wazy + Cwyy =0,

a b
where <b ) (x,y) is a symmetric positive definite matriz field satisfying uniform ellipticity condition,
c
then yathyy — 3, <0 and the equality holds only if Yyw = Vyy = Yuy = 0.

Proof. From uniform ellipticity the uniform ellipticity constant pug > 0,

o (W2, +v2,) < ( (b ) ( %) : ( %) ) = U2, + 20ty + 2,
= (72b"/)my - CZ/Jyme + wammwmy + CT/J?W
= —c(Yaathyy — l/ﬁy)

itz < (30 (0. (5))

= *a(wzzwyy - 37;)7

Similarly we obtain
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and hence

2 Ho
wzzwyy - %y < _aJr c

(¥3, + 207, +45,) < 0.

O

Remember that we also needed that J! x J? # 0 to derive (22I). These lead us to define an

admissibility of the data as follows.

Definition 2.4.1 (Admissibility 3). Let the domain Q be as above. The vector fields J*, i = 1,2,3 that

are smooth and divergence-free, are admissible in this section if

1. The map o(x,y) = (é(z,y),n(x,y)) = (— wQ(z,y),wl(x,y)), where Y1 and 2 are the stream
functions of first two vector fields J* and J?, are a diffeomorphism between Q0 and its image.

2. The scalar curvature of the stream function 1 of J3 with respect to the (€,n) coordinate system,

det D ,)) = teethny — Vg, <0

for all (£,1) € p(Q).

3. Along the boundary, the inner product (D27,/) T, T), where T is a unit tangent vector, has 4 simple

ZETOES.

Let us explain the relevance of the definition. The first part is slightly stronger than the condition
J1 x J3 # 0 in Q, which are the Jacobian determinant of the diffeomorphism. The second part also is
stronger than the one automatically obtained by Lemma 2.4l We omitted the equality to exclude the
degeneracy of equation.

The third part is related to the topological property. First let us remark the following observation.
Remark 2.4.2. One can let g := 7\/WD 1, which is symmetric and has one positive and one
negative eigenvalues. Then /—detg ¢! = (DQQ/J)_I. In other words, the equation [221)) for ¢ is of a

Laplace-Beltrami, the box operator Uy with respect to the Lorentzian metric g.

A Lorentzian manifold that admits a cauchy surface is called the Globally Hyperbolic Lorentzian
manifold. A cauchy surface is a the space-like hypersurface, where every time-like curve intersect. The
data on a cauchy surface determine the past as well as future of the function. Turning to our problem,
in order to solve (22I)), we should have a cauchy surface, a cauchy curve for our 2-dimensional case,
and the curve has to lie on 02, where we only know the measurements on ¢. The third condition
is a sufficient condition to guarantee both of them. In general, a two dimensional simply connected
Lorentizan manifold is not Globally Hyperbolic, but is stably causal. See [34] for more general contents.

We were able to present a theorem stating that the first condition and the second condition restricted
in the interior €2 are achievable. It is remained to be an open question whether we can fill the gap between
the status of stably causal to globally hyperbolic by only controlling boundary conditions. Here we left

it as an assumption.

Theorem 5. Suppose the conductivity o, a symmetric positive definite matriz field is given in Q. Then
there is a choice of Neumann boundary conditions ¢°, i = 1,2,3, such that J* = —oVu' satisfy the first
condition and the second condition restricted in the interior 0 in Definition [2.4.1} Here u® is a solution
of an elliptic equation

V- (oVu') =0, inQ,
, on 0.

—oVu'-n=g'
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In order to prove Theorem [ we introduce the following Lemma.

Lemma 2.4.2 (Meisters and Olech, 1963 [35]). Q@ C R™ bounded and the boundary is Lipschitz. Let
y € CHR™), det Dy > 0 for Vo € Q, ylaq is one-to-one. Then y is bijective on €.

proof of theorem[d. We may show the existence of three Dirichilet condition G*, i = 1,2,3 for ¥ with
the associated elliptic equation so that J? are admissible.

Let () be the embedding of 9 as before and let G1(¢) and G2(£) be as in the proof of Theorem [I]
and hence the 17 and 12 be the ones obtained from them. Then the determinant of Jacobian is nowhere
vanishing, so it satisfies the first assumption of the Lemma after flipping a sign if needed.

It is clear that the map (—1?2,1!)|sq is injective since ¢ € [0,27] — (—G?(¢), G (¢)) = (cos,sin )
is injective. From the Lemma of Meisters and Olech, the map ¢ := (—?2 ') is bijective in Q. The
differentiability of the map and its inverse come from the inverse function theorem. Therefore we proved
the first assertion that we can generate J' and J? satisfying the first admissibility condition.

Now, we prove the rest. Now we have the diffeomorphism so we use the (£,7) coordinate system.
One can see that ¢(f2) is a unit disk. As the discussion earlier, the third stream function 1 is a solution
of (22ZI)), which is a uniformly elliptic equation without lower order terms. Here 1 is unknown and the
second derivatives of ¢ are coefficients. By Lemma 2.1l we only need to prove D21 is not a zero matrix
for all points in Q to prove the second assertion.

Now we claim that if the boundary condition G3(¢) is set to be cos(2¢), then there is no point in Q
such that the Hessian becomes zero matrix.

Suppose there is a point (&g, 70) such that D% (&, m0) = 0. Suppose Vp(€g,m0) = (c1,¢2). ¢1 and
¢y are finite since ¢ is C''. Now consider 1/; = — 1€ — can, then its Hessian is not changed, but now
¥ has (&0,m0) as its critical point, in particular of multiplicity 2, since its Hessian vanishes at the point.
By linearity, 1 is a solution with a boundary condition G(¢) = cos(2¢) — ¢; cos(£) — ¢z sin(¢). In order to

investigate the local maxima along the boundary, differentiate G with respect to ¢ to obtain
G'(0) = —2sin(20) + ¢1 sin(f) — ¢z cos(f) = —4 cos(f) sin(€) + ¢y sin(¢) — ¢ cos().

Now consider an auxiliary function «(&,n) := —4&n+c1n— c2€ that coincides with G’(£) on the boundary.
The zero set of « contains the zero set of G'(¢), which is the intersection point of the unit circle and the
zero set of a. The zero set of o ins a hyperbola if ¢ + ¢ # 0, and is a two straight lines otherwise.
Therefore the number of intersection points with the unit circle is at most 4 and hence the number of
maxima is at most 2. By Alessandrini, 1/? cannot have a critical point of multiplicity 2, which contradicts
our assumption. Therefore there is no interior point such that the Hessian becomes zero matrix. By
lemma, we conclude that 1¢et)y, — 1/1?77 < 0in 9.

O

2.4.2 Main Theorem

We are going to prove our main theorem stated as follows.

Theorem 6. Let Q C R? be a simply connected bounded open set with smooth boundary. Suppose that
admissible vector fields J;, i = 1,2,3 are given, and Ny and Ng be the two characteristic vector fields

defined by Lemma[24.3, Let T :={x € 0Q|N; -n(x) < 0}, and I'; := {x € 9Q| Ny - n(x) < 0}. Also
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the voltage information on u' and u? are given on T'; , i = 1,2 by the following form.

(u',u?)-No =), onT7,
(u',u?)-N; =09, onT5.

Then, there exists a unique symmetric matriz field r € C(2), and voltages u' and u? such that r is given
by the formula ZI8), and u' and u? are the solution of [ZI9)-E20) with above boundary conditions.

In order to prove our main Theorem [6] we first prove several Lemmas.

Lemma 2.4.3 (Proposition 3.37 in [34]). Let (M,g) be a simply connected Lorentzian manifold of
dimension two. Then two smooth nonvanishing null vector fields X1 and Xo may be defined on M such

that X1 and Xso are linearly independent at each point of M.
In this thesis, we will denote N; and N5 instead of X; and Xs.

Corollary 2.4.1. We may define two smooth nonvanishing linearly independent vector fields N1 and

Ny on Q that are characteristic everywhere for the equation 21) if J; are admissible data.

Proof. Let ¢ be the diffeomorphism in the admissibility condition and U = ¢(Q2). For a fixed point, the

two characteristic vectors are given by the kernel of
Q:V (D> V,V).

Existence of two such directions comes from the second condition of admissibility, the strict hyperbolicity
of Z2I). N; and N can be defined by Lemma 243 for a Lorentzian manifold (U, g = ngw). Since

characteristic directions are invariant under a diffeomorphism, the assertion is followed. [l

Lemma 2.4.4. Let Q C R? be a simply connected bounded open set with smooth boundary. Let J;,
1 =1,2,3 admissible data. Let N1 and No be the two characteristic vector fields. Then 02 is a disjoint

union of connected curves,

N =Aur;uBluT,
=AJuT, UBYUTY,

such that

N, -n<0, inl;, N;y-n>0, inl{, N;-n=0, in A} and BY,

Ny -n<0, inl;, No-n>0 inl3, Ny-n=0, inAY andBS.
In particular, A is followed by T'; and BY is preceded by T'; in the counter-clockwise direction.

Proof. Since N1 and Ny are nowhere vanishing vector fields, the winding number of each of them
along the 99 is zero. Therefore Arg(N;) is a periodic function within a one branch of Arg func-
tion. On the other hand, Arg(T) of a tangent vector along the boundary takes all angles in a one
branch. Thus Arg(N;) and Arg(n) intersects at least once along the boundary by continuity. Sim-
ilarly, Arg(—Nj), Arg(Ns2), and Arg(—Nj) also intersect Arg(T) at least once respectively. Since
Arg (N;) and Arg (—N;) always have different values, and £(IN; x N3) # 0, those intersection points are
all disjoint. The third condition in the admissibility implies that there are only 4 connected components
of boundary whose tangent vector is characteristic, i.e. the intersection points. Therefore 4 components

correspond to each of intersection points.
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Hence, we may define A and BY, whose tangent vectors have same Arg values with N; and —N;
respectively. Then Ny - (n1,n2) = Ny X (—ng,n1) = N1 xT = 0 on the two set. There are no other points
in O such that Ny x T'= 0. Now define I'] be the one of two curves joining A} and BY so that one
N; -n <0, and I'{ be the other curve. Similarly we define, A9, BY and FQi. We may flip the definition

of A9 and BY so that the appearing order along counter-clockwise direction is as in the statement. [

Lemma 2.4.5. Let Q C R? be a simply connected bounded open set with smooth boundary. Let J;,
i = 1,2,3 be an admissible data, and N1 and Ng be the two characteristic vector fields. Then there
are two functions vi(z,y) and vo(x,y) such that v := (v1,v) is a C-diffeomorphsm between Q and its

mmage.

Proof. Observe that N7 and I'] consist an admissible data for an isotropic problem of Definition 22211
Therefore for an appropriate smooth initial data pg, we can define C! potential function u as in (Z.I4)
such that

V x (pN1) =0, —pNi =Vu, p>0.

Denote v; be the potential u, then Vv, is nowhere vanishing and parallel to N, i.e. the level curves of
vy are parallel to N7y.
Similarly, define vo with No. The determinant of Jacobian is nowhere vanishing since N1 x Ny # 0.
By Lemma (Z42]), we only need to prove the map v is injective on the boundary. Since p was
positive, 11 and v, are strictly monotone on I'; and I'; respectively. They are also strictly monotone
on I'f and I'J by Lemma 222 Since on A} and BY, where v; is constant, are subsets of I'; UT'S, vy is
monotone. On the other hand, A and BY, where v is constant, are subsets of I';y UT'], and thus v is
monotone. Therefore v|gq is injective.
|

Now we prove the main theorem.

proof of Theorem[8. Let v := (v1,12) be the C! diffeomorphism, and W := (). Since the level curves

of 11 and vy are characteristic lines, (Z2I)) can be written as
2¢V1V2 - a¢u1 - b¢ll2 = Oa (222)
where a and b are two functions of 1¢¢, ¢, and v, at each point. Let v1 = ¢, and v3 = ¢,,. Then

(9,/2’01 — 81,1’02 = 0,

Op, 1 + Oy, v2 = avy + bug,

31/11)2 V2

These equations on two unknowns v; and vy consists an exactly same structure of system (2.16). Together

or

with v? on I'T and v3 on I';, by Theorem H we conclude that there exists unique solution v; and v
such that
U1€Cl(W \A?UB?), UQGCl(W \AgUBg)

Since v was C'! map, we may conclude that

n €C @ \AVUBY), weC(Q\ AU BY).
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Remember that u! = ¢¢ and u? = ¢,. Note that in the interior €, u' and u? are C'. From the

formula ([2I8)), there exists a unique symmetric matrix field r € C(Q). O
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Chapter 3. Numerical Algorithm to Construct
Resistivity

In this chapter, we solve numerically the equation
Vx (rF)=0, inQ, (3.1)

r=rg, onl COIN.

Lo
V x " F;]1=0 ¢=1,2, inQQ, (3.2)
0 2

=7}, on T C o9,

r? =713, onT?C 09,

and the system

respectively, where r, !, and r? are real-valued functions, and I, I'! I'? are portions of 9.

Each of them are solved numerically by mimetic difference method. The mimetic method is a kind of
difference method that in particular mimics class of covariant operators such as gradient, curl, divergence,
laplacian, and etc with very high accuracy. Those who want more general information are referred to
[38], [31, [38], [39] and [40]. In Strang [36], we can find things that we only need to apply the method
in terms of circuit theory. There, the physics V -J and V x E = 0 are mimicked by Kirchoff’s Current
and Voltage Laws.

Recall that the equation [B.I)) and the system (B:2) were solved by applying tools for hyperbolic
equations in the preceding chapter. It will be seen in detail how the hyperbolic nature and the physics

are treated together in peace.n

3.1 Virtual Resistive Network : A mimetic discretization

In a mimetic discretization, values of various fields are assigned delicately. Consider mesh (z¢,y’) €
R? with 0 < i,j < n in Figure Bl Vector fields such as the current density J or the electrical field E
is assigned along edges. (see Figure BI(b)) For example, E“T27 is the component of the electrical field
E in the direction connecting two mesh points (z%,y7) and (™!, y7). Notice that (zi+3,57) denotes
the midpoint of the this edge. (see Figure BIlb)). Notice no full vector are assigned on a same site. A

discrete version of a V x E is approximated by

Eitsi g pitlity _ gitditl _ piclitd

for a cell enclosed by edges. The Kirchoff’s Voltage Law is a statement that the the expression vanishes
for all cells.

If E% satisfies the Kirchoff’s Voltage Law, it admits a scalar potential u that is assigned at vertices.
The potential values are assumed to approximate u* = u(z?,y’) (see Figure Bdl(a)). Then, we may set

ui-l—lj_uij uij-l—l _uij

ity —

ity 4 T % S
K il i yitl — gy

(3.3)
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On the while, a discrete version of a V - F is approximated by
Fitsi _ pitsi +Fij+% _ i3
at a vertex (7, ). The Kirchoff’s Current Law is a statement that the expression vanishes for all vertices.
If F is an incompressible vector field, i.e., V - F = 0, then it is convenient to consider a stream
function 1 that satisfies

19)
F =V%y, where V* = < ;) .

The F satisfying Kirchoff’s Current Law admits a discrete version of a stream function. The value of
the stream function is assigned to the midpoint of each cell, i.e., 1+2iT2 = ¢(zitz yiT2)(see Figure
BIc)). Then, F is given by

111 11 111 1.1
Fi-l—%j - wl+§]+§ _ ’l/JH_E =3 Fij-i-% B _wl+§]+§ _ wl—gj-i-g

: (3.4)

—7 — —7 -
y-7+§ — )72 itz — i3

If V- F # 0, we will take the divergence free part of the Helmholtz decomposition of the field F.
The conductivity and the resistivity are given by Ohm’s Law, J = ¢E or E = rJ. Therefore, it is
natural to assign them along the edges. Hence, we set

Jithi = githipgithi, Ei+hi = pitdi giths,

o e or o 4 (3.5)
Jiits = glita piits, Eiits — pidts Jiits,

>
— — >
uz Jj+1 uz+l Jj+1
i+1j+1 il 3
Eiits PYitEits Witdits
A A x 2
EH—% J
>
utd uz+1]
(a) potential function (b) vector field (c) stream function

Figure 3.1: Mimetic discretization: The potentials are assigned at vertices, the electrical fields are

assigned along the edges, and stream functions are in cells.

This mimetic approach is identical to the resistive network system given in Figure This resistive
network has been virtually made from a continuous conductivity body as a discretization method and
we will call it a virtual resistive network (or VRN for brevity). The use of these mimetic discretization
reduces computation error. For example, the sum of edge values of E along any closed loop in the
network automatically becomes zero, which is not the case of a finite difference method. In other words,
Kirchoff’s law of voltage is exactly satisfied and hence the main part of the computation error is from

the data, but not from the discretization of the problem.

Remark 3.1.1. The network system naturally approximates an orthotropic resistivity. If we make use
of full degrees of freedom to assign r wvalues in wvertical and horizontal edges, then it reflects that the
resistivity at a local point has different eigenvalues along the two directions. Since we have constructed
only rectangular network, the eigenvectors are all fized to be aligned to azxes, which means the resistivity

field is globally diagonalized orthotropic one.
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(a) VRN (b) components of a cell

Figure 3.2: A network. If the resistivity values of boundary resistors along two sides of the domain, the

colored (or grey) ones, are given, the others can be computed by a cell by cell local computation.

3.2 Virtual Resistive Network for Isotropic Materials

In this section we develop a numerical algorithm which is based on a virtual resistive network
system. For simplicity, we construct a square network in this section. However, the algorithm comes
from a contour integration of an arbitrary network system and one may develop various shapes of
network system depending on the geometry of a given problem. Since the network system plays as a
background of the discretization, one may rotate it as in Figure B.7 and obtain various reconstructed
images to compare the noise effects using a single set of current data. This reconstruction algorithm
has a nature of hyperbolic problems such as the noise propagation along characteristics and the domains
of dependence and influence. In the simulation we investigate the effect of multiplicative and additive
noises. The computation cost of the algorithm is very low since the conductivity is obtained from a cell
by cell local computation. Hence we may save a concern of the convergence of an iterative algorithm
and do three dimensional computations easily.

The numerical simulation results are compared with an equipotential line and a direct integration
methods [16, 15, T1]. The VRN method developed in this section provides much better conductivity
images than other methods. The key of the conductivity reconstruction is to reduce the noise propagation
along characteristic lines which is the source of noisy stripes in the reconstructed images. The VRN
method reduces the appearance of such stripes. However, if the noise level becomes as big as 30% as in
Figure BI5(c), such stripes appear again. One may develop various shapes of network system (see [13])
or apply two sets of current data with perpendicular characteristic lines to reduce the appearance of the

noisy stripes.

3.2.1 Properties of Rectangular VRN : Isotropic

We derive a conductivity construction algorithm using a VRN (virtual resistive network) and in-
vestigate its property. The network gives basic structures of VRN and one may develop other shapes of
VRN to improve its performance. For a presentational simplicity we consider a domain 2 = (0,1) x (0, 1)
and the boundary I' = {0} x [0,1]U[0,1] x {0} C 9Q. However, one may handle any shape of domain by
simply placing it on the VRN. In fact, the simulations in Section are for a circular domain placed
on the network developed in this section. The mesh points (z°,y7) are with 0 < i,5 < n. Hence there
are (n + 1)? vertices, 2n(n + 1) edges, and n? cells. We assume that the boundary resistivity ro is given

along the edges on the boundary I (see Figure B2[(a)). In other words, 2n number of resistors are given
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initially and therefore, our job is to decide the other 2n? resistors.
Let D be the area of a cell (see Figure B2(b)). Then, the integration of (B]) over the area D gives

0= /D V x (rF)da = éD FF(2)dz.

We will assume that each edge has the same unit length. Then, the resistor and resistivity are equivalent.
For convenience, we denote the resistor and the current density as in Figure B2(b). Then, the above
equation is written as

rOFe 4P —pepe — pdpd — (3.6)

2 number of cells and hence n? equations.

which is also called Kirchoft’s voltage law. Note that there are n
Therefore the number of equations are not enough to decide 2n? unknown resistors. If two sets of current
data are given, say F; and Fs, then we obtain 2n? equations and those unknowns can be decided. In
the case r¢ gives a conductivity in horizontal direction and r° in vertical direction. In other words, we

may actually obtain orthotropic conductivity. For an isotropic case, we assume
rb = re. (3.7)

Then, the total number of unknowns are n?. Suppose that two resistors r* and ¢ have been obtained
in previous steps or initially. One can find such a cell from Figure B2(a), which is at the left bottom
corner. Then, the above relation gives

b TdFd _ papa

. . b c
= e i FUA P (3.8)

If 7* and r¢ are decided, then we have another cell with two given resistors and hence we may continue
and find all resistors. Notice that, if F* — F'° = 0, we cannot obtain the resistivity. The admissibility

condition is actually related to avoid such a situation (see Section B2.1]).

Remark 3.2.1 (Anisotropic Resistivity). The assumption (3.7) restricts the orthotropic case to the

1sotropic case.

Admissibility of Boundary

Recall that the resistivity could be constructed under the condition that the boundary I' and the
field F are admissible. Here, we consider the domain Q = (0,1) x (0,1) and the boundary I' = {0} x
[0,1] U [0,1] x {0}. This choice of boundary allows the existence of a cell with two given resistors (r¢
and 7¢ in Figure B.2(b)) all the time. If a different boundary is chosen, then the algorithm should be
modified appropriately. Notice that, if F* — F© = 0 in Equation (3.8)), we cannot obtain the resistivity.
In the following discussion we fix the boundary I' and consider the effect of the direction of currents.

In Figure three examples of recovered conductivity are given with fixed same I' for all cases.
Three different current densities are considered, where the currents were injected through two electrodes
on the boundary denoted with arrows in the figures. Since an admissible boundary I'" is where the
vector fields orthogonal to J is in inward direction, the case of Figure B3|(c) is the only case that the
boundary we fixed is admissible. Note that the conductivity has been reconstructed completely only for

this case. This example explains the importance of having an admissible boundary and current density.
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(a) nothing recovered (b) partly recovered (c) fully recovered

Figure 3.3: Two dimensional isotropic conductivity has been recovered with Q@ = (0,1) x (0,1) and
I' = {0} x [0,1] U [0,1] x {0}. Injection currents are applied through two electrodes denoted by arrows.
The boundary I' is admissible only for the case (c¢) and the conductivity is fully recovered. Noise is not

added in these examples.

Domain of Dependence and Influence

In the construction algorithm the conductivity of a given cell is obtained after a series of cell by
cell computations. In the algorithm the conductivity at a given cell is decided by the cells on its left
and below. We call this region the domain of dependence of the conductivity at = (see Figure B4la)).
Therefore, the noise of current data in this region is the source of the error of the conductivity at x.
Similarly, the conductivity value at a give cell propagates to the cells on its right and above. We call

this region the domain of influence of the information at x (see Figure B.4(b)).

Q Q

(a) domain of dependence (b) domain of influence

Figure 3.4: The domain of dependence of a conductivity value and the domain of influence of the data

at a point x € Q are in the figures. The show a hyperbolic nature in the curl equation ([B.1).

The existence of domains of dependence and influence shows a hyperbolic nature of the problem. In
continuum, the domain of dependence and influence for a point is the characteristic line passing the point.
A wider region of dependence in our discretization allows a chance to get noises mixed and dissipate.
Later we will see that, if the network is parallel to characteristic lines, the domains of dependence and
influence becomes a stripe along the characteristic line and the recovered image contains stripes of noises.

Hence, it becomes important to design network in a way to avoid such a situation.

Characteristic lines and Noise Propagation along Characteristics
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Recall that we may find r by method of characteristic as seen in the formula (ZI)) in preceding
chapter

r(x(5,)) = (x(5,0)) exp (/Ot V x F(X(S,T))m)

where x(s,0) € I' C 9Q and r(x(s,0)) is the given boundary condition.
The curve x(s, -) is called a characteristic line. One can easily see that this curve is an equipotential
line for an isotropic conductivity case since the current density J and the electrical field E = —Vu are

parallel to each other.

Remark 3.2.2 (Equipotential line method). The equipotential lines are easily obtained from J for an
isotropic case. Since the voltage u is constant on it, one may compute the voltage first if the bound-
ary voltage is giwven. Then, the conductivity is obtained by Ohm’s law. This algorithm is called an
equipotential line method (see [I1)]) (see Figure[311).

Remark 3.2.3 (Direct integration method). One may use the formula (211) to directly compute the
resistivity along characteristic lines. Reconstructed conductivity tmages by such a direct integration are
given in Figure [TT12. This is basically the same method used by Ider et al. [13, Figure 6]. If two sets
of current data are given, the performance can be improved by integrating along non-characteristic lines

even with 10% multiplicative noise [15, Figure 4J.

Figure 3.5: VRN and equipotential lines. If VRN is aligned along equipotential lines, the conductivity

reconstruction process becomes more sensitive to noise.

Consider a case that the virtual network is aligned along characteristic lines as in Figure Then,

since there is not electrical current that passes along the equipotential lines, we have F, = F. = 0.
Therefore, Eq. ([B.6]) becomes

PE —rlFl =0 or 7P =riFd R0

Notice that only the information along the characteristic line is used to compute 7* and hence the
domains of dependence and influence are restricted to the cells along the characteristic line. Therefore,
the algorithm has no regularizing effect, and VRN becomes like the Direct Integration algorithm. In
other words, it is important not to align the virtual network system in a direction which is parallel to
the equipotential lines. Rotating a network in the next section is one of the strategies to avoid such a

situation locally.

3.2.2 Rotating a VRN

Considering that the posed resistive network is a virtual, we may choose the one in arbitrary shape.

In this section we consider a technique of rotating network of same rectangular shape. We have two
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reasons for the rotation. First, the relation (3.8) is applicable only if F® — F¢ 22 0. The choice of
admissible boundary (see Section B2 gives a best chance to avoid such a situation. However, if the
current datum F contains a noise, the case of F® — F = () is not avoidable in some regions. By rotating
the network we expect noise effects in some region may disappear with a rotation angle. Another reason
is to avoid a region that the network is parallel to the characteristic lines. In this way we may reduce
the stripes of noises from reconstructed images. Notice that we may produce several conductivity images
using a single set of current data if different rotation angles are used. Comparing these images may help
us to distinguish the effect of noise and true conductivity (see Remark B.2.6). It is an important point
that this analysis is affordable because the VRN algorithm for a fixed network is solved almost instantly

in a ordinary computer. In the following sections the detailed technique of rotating VRN is discussed.

Stream Function

Suppose that a current density F is given along network edges. If the network is rotated, one should
reassign the current density along new edges by interpolating the given data. However, a new noise may
appear in doing that and, more importantly, basic physical laws such as Kirchoff’s current law can be
broken. In this section we develop an interpolation method based on the stream function that keeps
Kirchoff’s current law.

We solve ([B.4) to find a stream function 1 inside the domain Q. Let ¢ = 3/t — ¢ = 2t — 2%,
Then, (34]) is written as

CFiTE) =ity —gitaimy 0<i<n, 0<j<n, (3.9)
—cFii+3 = qpit3its — qpi=3i+3 ~

0<i<n, 0<j5<n

(see Figure B6). Notice that there are n? unknowns of ¢"t27+2 with 0 < i,j < n and 2n(n — 1)
equations in ([30) and hence the system is over determined. However, the sum of incoming current and
outgoing current at a given vertex should be identical in a physically meaningful network, which is called

Kirchofl’s current law and written as

Fityi _ pim3i L plits _piioY 0, 0<i,j<n. (3.10)

Since the noised current density may not satisfy this relation, we should do the Helmholtz decomposition
for the vector field and take the divergence free part (see Section B.Z4). Notice that there are (n — 1)2
number of interior vertices and hence we have (n — 1)? equations in (3I0). Therefore, the total number
of independent equations are

2n(n—1)—(n—1)> =n? - 1.

Now there is one extra unknown left, which reflects the fact that the stream function is unique up to
adding a constant. Hence we may ground it by using an extra equation 1/)% 3 = 0 and decide the stream
function uniquely. The value of stream function along the outside of the domain can be solved by using
the boundary current density (see Figure[3:6|(a)). Notice that there are 4n exterior values for the stream

function and 4n boundary edges. Hence, one can easily obtain them using the relations in (39).

Remark 3.2.4. Notice that (39) is the network version of the relation F+ = V) and (310) is the
network version of incompressibility V- F =V x F+ = 0. Therefore, the existence of 7,/1”% i3 s simply

the network version of the existence of a potential.
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(a) v is defined at cell center (b) stream function and current

Figure 3.6: The points marked by x are where v is defined.

Remark 3.2.5 (H~? is the stream function.). Let H be the magnetic field. Then, the fourth law of

Mazwell’s equation, or Ampere’s law, is written as
VxH=1J.

In two space dimensions, we have 0,HY = 0,H* = 0 and hence

g\ ([ o,H*
Jv]  \-o,H?)’

i.e., the stream function is the z-component of the magnetic field. It is the magnetic flux density B = uyH
that is measured by the MRI technology, where the coefficient p is called the permeability. Therefore, for
a two dimensional current flow, the mimetic approach in this section is a way to reduce the intermediate

data process and to minimise the discretization error.

Network Rotation

If the stream function for a given current density F is obtained, one is ready to rotate the network.
In Figure Ba) a network system is given before a rotation. In this example, the domain 2 of the
conductivity body is the circular disk tangent to the outside square and is placed on the network. In
Figure B7(b) this network system has been rotated with angle § = 45°. In that case the edges and the
center of each cell represent difference places of the body. Therefore, we should reassign the current data
to each of the edges. To do this we first interpolate the values of the stream function at the new centers
of rotated cells. Then, the current along each edges is automatically reassigned by the relations in ([B.9).
In this way we may reduce the discretization error and satisfy Kirchoff’s current law.

We will rotate the network for angles with the range of —20° < # < 20°. Notice that our choice of
boundary current is similar to the case of Figure B:3|(c) and hence, if the network is rotated for the angle
of § = 45°, one may obtain an image similar to Figure BZ(b). If § = 90°, then the obtained image is
similar to Figure B7(a). Our purpose is not to find a best angle of rotation, but to distinguish the effect
of noise and true conductivity by rotating a network with a relatively small angle. The network rotation
gives a series of images for the static conductivity. We may make a movie clip with these static images
of different rotation angles. Inconsistent part of the image is the effect of a noise (see Remark BZ0).

Remember that this movie was made from single set of current data.
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L

(a) network before rotation 6 = 0 (b) rotated body with 6 = 45°

Figure 3.7: If a network is rotated, the center of each cell is changed. The value of the stream function

at these new cell centers is interpolated. The current density along a new edge is given by these values.

3.2.3 Numerical Simulation Setup

For the numerical simulation we took the target conductivity ¢ from a Matlab function, which is
given in Figure[B.8 This image has been frequently used by many authors. The scale of the conductivity
value is

0.1<0<0.5.

This conductivity corresponds to a resistivity of range 2 < r < 10. In the simulation we compute the
resistivity distribution first using VRN method and then convert the result in terms of conductivity for
easier comparison to other methods. The challenging part of this target conductivity is the discontinuity
that may parallel to the electrical current. The physical size of the conductivity body used in the
simulation is a disk with a diameter of 50cm.

The electrical current of 10mA was uniformly injected through the circular boundary in the second
quadrant, 5 < 6 < 7, where the origin is the center of the circular domain. The same amount of current
is uniformly extracted from the boundary in the fourth quadrant, —5 < 6 < 0. The 'Y in Definition
22T consists of these two boundaries. The boundary in the first quadrant, 0 < § < 7, becomes r+
and the one with —7 < 6 < —% is I'". For the boundary condition we took I' = T—. This boundary
condition can be extended to I'° exactly since the boundary itself is a characteristic line in the region
(see [23]).

The current density J has been obtained by solving a forward problem using a network system,
which are displayed in Figure It is well known that the network forward solver is equivalent to
FDM forward solver (see Strang [36]). The advantage of using network forward solver is to minimize the

discretization error. We have obtained a current density J = (J*, JY) with the size of
1L1x1073 [A/m] < |J| <4.6x107% [A/m].

The dimension [A/m] of a current density fits to our two dimensional model. Using the relations in
9) and (BI0) we may compute the corresponding stream function . In Figures B.I0(a) and (b), the
equipotential lines and the stream lines are given, respectively. The streams lines are level curves of a

stream function and perpendicular to equipotential lines.

Multiplicative and Additive Noises

— 35—



We add a noise to the current data in the following simulations to test the stability of the algorithm.

We will add two kinds of noises, which will be called multiplicative and additive noises. The multiplicative

(s 61) .

where —1 < X < 1 is the random variable with a uniform distribution. The size of the multiplicative

noise of p% is a random noise computed by

noise is proportional to the size of current J.

The additive noise follows a normal distribution of average y = 0 and a standard deviation s.d. > 0,
say N (0, s.d.). Summing them up gives the current density data used in the simulation which is written
as

_ R
F=J+ (1OO|J|)X+N(O,s.d.). (3.11)

As a measure of additive noise we consider the ratio of signal to standard deviation,

averaged current Signal per edge

S/D = (3.12)

standard Deviation of noise

There are 23,863 network edges in the interior circular domain and the average current used in the
simulation is about 0.078mA. In the simulation of Figure B.16 we added an additive noise with a
standard deviation s.d. = 0.003mA to each of the edges and hence the ratio is S/D = 26.

3.2.4 Simulation results

In this section we discuss the simulation results of the VRN method using the current data given
in Figure and noises in ([IT)). This simulation consists of two parts. In the first part, we directly
compute using the noised data in (BI1]). The VRN method is compared with an equipotential line method
(see Remark [3:2.2) and the direct integration (2Z.11]) along characteristic lines (see Remark B.2.3). In the
second part the divergence free part of the Helmholtz decomposition is used. This decomposition process

improves the VRN method considerably.

Before Helmholtz Decomposition

The images in Figure B.I1] are reconstructed conductivity distributions obtained by an equipotential
line method. We are using the same color map as the one given for the target conductivity in Figure B.8l
From the recovered conductivity images one may observe the stripes along equipotential lines. These
show that the noise of current density along the equipotential lines stays in them.

In Figure the conductivity images have been reconstructed by the direct integration method
given by the formula (ZIT)). These reconstructed images have the same structure as the ones by the
equipotential line method. Notice that equipotential lines and characteristic lines are identical to the
isotropic conductivity case and noise inside a characteristic line stays in them. One may say that the
performance of these two methods are compatible.

In Figure B.13] reconstructed conductivity images by the VRN method are given. For the case with
1% multiplicative noise, the conductivity image has been almost recovered. For the case with 5% noise,
the strong stripes of the other methods have been disappeared. However, a wide and thin band in the
direction of characteristic lines appears. However, one may still observe the small and large anomalies in
the domain. A problematic region is the left lower part of the domain. This is a region that the electrical

current is parallel to the discontinuity lines of conductivity. Because of that the small anomalies in the
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lower middle regions of the domain are not observed. Even if an additive noise is added, the problematic
region is the same and the over all picture is similar. Therefore, the remedy for this symptom is obtaining
a cleaner data or using a different current data in a different direction. We will see in the next section

that the Helmholtz decomposition gives a better chance to resolve this problem.

After Helmholtz Decomposition

The current of a resistive network should satisfy Kirchoff’s current law (B.I0)), which is equivalent
to V- F = 0 in a continuous version. However, the current density field F does not satisfy the relation
if a noise is included. In this section we decompose F into the divergence free and curl free parts using

a Helmholtz decomposition algorithm and reconstruct the conductivity image using the divergence free

e () (2)

where the first part is divergence free and the second part is curl free. Therefore,

part. Set

Ay =-V x F, Ap=V-F, zec.
For the boundary condition, we take
Vip-nt=g, Vo-n=F-n—g, zecdQ.

Notice that we only need to find 1, which is the steam function. The normal component g of boundary
current is the one in ([ILT]), which has been chosen for the experiment but not from measurements.

Conductivity images are reconstructed in Figure B.I4] using the divergence free part of Helmholtz
decomposition, where the same 5% multiplicative noise as in the previous section is added. One may
find that there is no significant improvement in the equipotential line and direct integration methods.
However, the conductivity image reconstructed by the VRN method has been improved considerably.
The stripes in the direction of equipotential lines are disappeared. This improvement allows us to increase
the noise level considerably when we use the VRN method.

In the next three examples, we test the VRN method with larger noise levels. Three multiplicative
noise levels of 10%,20% and 30% are tested and the reconstructed conductivity images are given in
Figure The shapes of larger anomalies are recognizable even with 30% noise. However, smaller
ones are not distinguishable if the noise level reaches to 30%. We may observe the stripes parallel to the
equipotential lines appeared again if the noise level increases. The reconstructed conductivity images
in Figure are obtained after adding three additive noises of the signal to standard deviation ratio
S/D = 78,39 and 26. One may observe the same phenomenon of noise propagation along the direction
of equipotential lines.

Finally, in Figure B.I7, the conductivity images are obtained by the rotated VRN. Three images
with three different angles, § = —5,5 and 10, are given with an additive noise of S/D = 39. The one in
the middle of Figure is the case with § = 0. It seems that the effect of true conductivity is more
consistent in compare with the effect of a noise under the rotation of the network. It seems that there is
no special angle that shows the best image. However, comparing them helps us to distinguish the effect

of true conductivity and the noise.

Remark 3.2.6 (Making a Movie Clip). One may make a movie clip with the conductivity images

of several rotation angles. We made a few of them and placed them in “ You Tube” with a title of
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“conductivity reconstruction by rotating VRN”. Such a movie clip may help us to distinguish the effect

of noise and the true conductivity.

3.2.5 Discussion

An isotropic conductivity reconstruction algorithm has been developed in this section when the
current density J is given in the whole domain. The motivation of this inverse problem is from the
magnetic resonance imaging based electrical impedance tomography or simply MREIT. Many authors
considered the incompressibility of the current density (II) and the Ohm’s law to reconstruct the
conductivity distribution. However, we have chosen Faraday’s law (B.]) since the given current density
is directly involved in the equation. Discretization of this curl free equation has been studied relatively
less than the divergence free equation. We have constructed a resistive network system to discretize the
equation. Then, a contour integration on each cell boundary gives Kirchoff’s voltage law. Using this
network discretization and the Helmholtz decomposition technique the VRN (virtual resistive network)
method suggested in this paper successfully reconstructed the conductivity image. The maximum noise

level we have tested is a 30% multiplicative noise or an additive noise of

averaged current Signal per edge

S/D := =~ 26.

standard Deviation of noise

The simulation in the paper indicates that the key to a successful conductivity reconstruction is
reducing the noise effect that propagates along equipotential lines. Such a trouble is observed from all
algorithms including iterative ones (see [22| Figures 1 and 3]). For example, the stripes along equipo-
tential lines ruin the conductivity images by the equipotential line and the direct integration methods
even with a low noise level of 1%. The VRN method of this paper shows a robust behavior and we
may increase the noise to 30%. However, the stripes still appear as the noise level increases. We may
think of two ways to reduce such a noise further. First, one may design various shapes for network
system. In this paper we have considered only a network system. However, the network idea has a good
flexibility. One may easily construct a triangular network system where Kirchoff’s laws of voltage and
current can be easily implemented. Rotating a network is also an idea to find an angle with a different
(but not necessarily a better) local behavior. Second, one may use another set of current data with
different direction of equipotential lines. Then, the noise propagation along characteristic lines can be
cancelled to each other. One may also easily distinguish the effect of noise and the true conductivity.
In fact, Ider et al. used two sets of current data to integrate the term in (Z-I1]) along non-characteristic
lines and successfully improved the conductivity image from [I5, Figure 6] to [15, Figure 4] with a 10%
multiplicative noise. Notice that the VRN method already handles 30% noise using a single set of current
data.
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Figure 3.8: True conductivity image used in the simulation. The circular domain tangent to the outside

square is used.
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(a) J*: z-component of current (b) JY: y-component of current

Figure 3.9: The current J is obtained by solving the forward problem using 128 x 128 mesh grids. The

number of cells inside the circular domain is 11,934.
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(a) equipotential lines
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Figure 3.10: The equipotential and stream lines of the current density J.
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1% multiplicative noise 5% multiplicative noise additive, S/D = 260
Figure 3.11: Equipotential line method

1% multiplicative noise 5% multiplicative noise additive, S/D = 260
Figure 3.12: Direct integration given in Eq. (ZIT).

1% multiplicative noise 5% multiplicative noise additive, S/D = 260
Figure 3.13: Virtual Resistive Network (VRN)
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equipotential line direct integration VRN

Figure 3.14: Helmholtz decomposition and a 5% multiplicative noise.

10% 20% 30%

Figure 3.15: VRN with Helmholtz decomposition and multiplicative noises.

3 “‘a%
d m.*

S/D =178 S/D =39 S/D =26
Figure 3.16: VRN with Helmholtz decomposition and additive noises.

0 =5° 6 =10°
Figure 3.17: Rotated VRN with Helmholtz decomposition (S/D = 39).
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3.3 Virtual Resistive Network for Orthotropic Materials

Here we apply the VRN algorithm on orthotropic materials. The section is organized in parallel

with the preceding section. We first investigate the properties of VRN algorithm on orthotropic problem.

3.3.1 Properties of Rectangular VRN : Orthotropic

We derive a conductivity construction algorithm using a rectangular VRN (virtual resistive network)
and investigate its property. We consider a domain £ = (0,1) x (0,1) and the boundary I" = {0} x
[0,1]U[0,1] x {0} C 9. As was discussed in [B.2.3] there are (n + 1)2 vertices, 2n(n + 1) edges, and n?
cells. We assume that the boundary resistivity 7§ is given along the edges on the boundary I'!; where
' is the bottom edges of the network and I'? is the left most edges of the network. (see Figure B.2|(a)).
Therefore, 2n number of resistors are given initially and therefore, our job is to decide the other 2n?
resistors.

As was in B22:3] the integration of (B2) over the area D gives

0= /D V x (rF)dz = fép rF(2)dz.

and we have

rOFS 4P FY e pe — pdpd — (3.13)
rFg 4P FY — ¢y —riEd =0, (3.14)
which is the two Kirchoff’s Voltage Laws. Note that there are n? number of cells and hence 2n? equa-
tions. Therefore those 2n? unknowns can be decided. Note that, the 2n? x 2n? linear system is almost

diagonalized. Suppose that two resistors 7* and ¢ have been obtained in previous steps or initially. One
can find such a cell from Figure B2l(a), which is at the left bottom corner. From BI13), 14,

-1
rb _ Flb —F7 —r?Fp +TdF1d (3.15)
re FQb —Fy —r*Fg 4+ TdFQd

FYF§ — FEFY 0.

provided

Observe the above condition indeed is a discrete version of the admissibility condition for an orthotropic

problem (See Z370)).

Domain of Dependence and Influence

In the contrary to the isotropic problem, the characteristic lines are not dependent on the data but
are always the horizontal and the vertical lines.

For this system, ! and 2, the horizontal and vertical components of resistivity, couple to each
other, and their shared domain of dependence are an area enclosed by two characteristic lines and the
domain of influence are similar the ones in figure B4 (a) and (b). For this case, they are also the ones
of continuum hyperbolic system ([3.2)). However, this coupling is only of the low order one, and in the
principal part of the system ([3.2) they are decoupled. Hence, the domains of dependence and influence

are reduced to a characteristic line when the low order terms can be ignored.
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Characteristic lines and Noise Propagation along Characteristics

We encounter the problematic case when the data F; and Fs also are aligned respectively to each
family of characteristic lines.
Suppose this happens, for instance F; is a horizontal vector field and F5 is a vertical vector field in

a certain region. Then for such a region, the formula (3.I5]) becomes

2 2
Ty = 7Fd/Fb rd,
1 1
re=—F,/F, 14,

and the domain of dependence and influence of a certain horizontal and a vertical resistivity are restricted
to a line of edges respectively. Then a noise in a horizontal edge is transported vertically, and a noise
in a vertical edge is transported horizontally. These phenomena are indeed observed in simulations as
illustrated in Figure [3.18(a)| and [3.18(b)}l We did not put the detailed configuration of this simulation,

but we can see from figures vertical stripes and horizontal stripes. The current is injected only through

the bottom, and extracted only from the top for the F; so that it has the vertical directional tendency,
and the current is injected only through the left, and extracted only from the right for the F5 so that it

has the horizontal directional tendency. Therefore, it is desired to design network so that we avoid this

(a) Horizontal component (b) Vertical component

Figure 3.18: The reconstructed image of orthotropic conductivity with J; and Jo, where J; has a vertical

directional tendency, and Jo has a horizontal directional tendency.

situation.

3.3.2 Mimicking Diagonal Network

One possibility in order to avoid a situation that have the domain of dependence and the domain
of influence be restricted on a line, is to consider a network tilted by 45 degree as in Figure
Considering that the characteristic lines are always fixed to be the horizontal and vertical lines, one
possible option is to consider a network tilted by 45 degree as in Figure to have wider domain
of dependence and the domain of influence. However, this is to go to another story because we want to
obtain the eigenvalues of the resistivity along the horizontal and vertical edges.

One another possibility is still available. Without forgiving the easy implementation of rectangular

VRN, one may consider virtual networks of Figure [3.19(b)| and [3.19(c)} Both of virtual networks are
mimicking the tilted network but with cells not tilted. Consider a network of Figure [3.19(b)| with two

data F; and F5 that are parallel to horizontal lines and vertical lines respectively, which was the case we
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(a) Diagonal disposition of net- (b) Alternate disposition of Hor- (c) Alternate disposition of Verti-
work izontal Edges cal Edges

Figure 3.19: The two different virtual networks that mimic a diagonal network.

encountered a problem. For this configuration, one verifies that the horizontal resistivity is still depends

on and influenced by the vertical line, but the vertical resistivity is now depends on the colored region

in the Figure[3.19(b)l It is opposite with a configuration of Figure

Therefore, we reconstruct resistivity twice, one with a network of Figure [3.19(b)| and one with a
network of Figure [3.19(c), and then pick the vertical values from the former, and the horizontal ones
from the latter. Of course, to place the two networks, stream functions of F, and Fy with Helmholtz

decomposition are used.

3.3.3 Numerical Simulation Setup

The true conductivity for the orthotropic reconstruction problem is prepared as follows.

0.4 .
0.3 .

‘ 0.2 .
0.1 .
0

(a) Horizontal eigenvalue (b) Vertical eigenvaluen

Figure 3.20: True images of horizontal and vertical eigenvalues of conductivity that are used in simula-

tions of orthotropic resistivity reconstruction and simulation setup.

The eigenvalues also have been scaled to be
0.1 <o1,00 <0.5, orequivalently, 2 <ry,ry <10,

where o1 and o9 are two eigenvalues of conductivity, and r; and 72 are the ones of resistivity.

The physical size of conductivity body used in the simulations was 50cm x 50cm. An electrical
current of total amount 10m A was injected uniformly through the boundary lied in right bottom quadrant
assuming the center of body is at origin, and extracted uniformly from the boundary lied in left upper
quadrant for the first current data J;. The same amount through left bottom quadrant and from right

upper quadrant for the second data J>. The locations of injections and extractions are chosen so that the
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Figure 3.21: Two current data J; and Jo used in simulations of orthotropic resistivity reconstruction.

currents generated do not have tendencies that are aligned with network edges. Also the combination of
boundary conditions are the ones that guarantee J; x Jo # 0. They are illustrated in Figure B.211

The sizes of absolute value of data were

3.7x107° [A/m?] < || <53x107% [A/m?],
1.2x107% [A/m?] < |J2] <6.2x1072 [A/m?].

3.3.4 Simulation Results

In this section we discuss the simulation results of the VRN method using the current data given
in Figure B2T] and noises in (I1]). This simulation consists of two parts. In the first part, we directly
compute using the noised data in BII). In the second part the divergence free part of the Helmholtz

decomposition is used. This decomposition process improves the VRN method considerably.

Before Helmholtz Decomposition

The images in Figure B.22] are reconstructed conductivity distributions with noised current data.
We are using the same color map as the one given for the target conductivity in Figure 3.200 From the

recovered conductivity images one may observe the stripes along the vertical and horizontal lines are

reduced in compare with images of |3.18(a)| and [3.18(b)| although we still see them in particular in the

figures in the third column. The edges of each regions can be clearly identified. It is very impressive
that the small dot in the center of the images of the second row are clearly seen in all of them. The
three small dots in the left upper region also are observed as well in all of the figures. However, one
also can notice that the noise is still in lower level than what we achieved in the isotropic conductivity
reconstruction. Although one cannot compare two reconstruction processes directly, this suggest that
it is not sufficient to use the networks mimicking diagonal one, and we are supposed to use Helmholtz

decomposition and regularization.
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(a) 1% () 5%

(d) 1% (e) 5% (f) 1%+ additive noise

Figure 3.22: The orthotropic conductivity is reconstructed from J; and Jy that has 1% multiplicative
noise, and 5% multiplicative noise, and additive noise with s.d. 0.0003 + multiplicative noise of 1%,
respectively. The first row are images of horizontal eigenvalues, and the second row are the ones of

vertical eigenvalues.

After Helmholtz Decomposition and Regularization

In this section we decompose F; and Fs into the divergence free and curl free parts respectively
using a Helmholtz decomposition algorithm and reconstruct the conductivity image using the divergence
free parts as was done in section 3.2.4] Boundary conditions are assigned as same way as in section [3.2.41
After obtaining two stream functions, we performed a regularization by following process. First we set

a kernel H; by 3 x 3 matrix
0.0251 0.1453 0.0251

0.1453 0.3183 0.1453
0.0251 0.1453 0.0251

whose entries are summed to 1. The two stream functions are then discrete convoluted by this kernel,
which will smooth the data by local averaging. At boundary, the stream functions are extended to have
two more columns and two more rows with same values at the boundary so that the convolution can be
performed.

Conductivity images are reconstructed in Figure using the divergence free parts of Helmholtz
decomposition and regularization. We test the VRN method with larger noise levels. Three multiplicative
noise levels of 10%, 20% and 30% are tested and the reconstructed conductivity images are given in Figure
Conductivity values in a certain region are not distinguishable if the noise level reaches to 30%.
One can still see the small dot in the center of the images of the second row, and three small dots in the
left upper region in all of the figures.

In the next three examples, we added the additive noise with standard deviation 0.0001, 0.0005, and

0.001 respectively. One may find that there is significant improvement.
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(d) 10% (e) 20% (f) 30%

Figure 3.23: The orthotropic conductivity is reconstructed from .J; and J, that has 10%, 20%, and 30%
multiplicative noise respectively. The first row are images of horizontal eigenvalues, and the second row

are the ones of vertical eigenvalues.

(a) 5% (b) 10% (c) 20%

(d) 5% (e) 10% (f) 20%

Figure 3.24: The orthotropic conductivity is reconstructed from J; and J; with additive noise with stan-
dard deviation 0.0001, 0.0005, and 0.001 respectively. The first row are images of horizontal eigenvalues,

and the second row are the ones of vertical eigenvalues.
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Summary

Well-posedness in anisotropic conductivity reconstruction
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