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§1

9 1. Fundamental tensor and layer potentials for the

Stokes equations.

The Stokes equations

—vAu+Vp=0, in D
V-u=0 in D,

(1.1)

where v is the viscosity, D is an open domain in R", v : D — R" is
the velocity and p : D — R is the pressure.

| A\

Nonstationary problem

{ut—uAu—i—Vp:O, in D x (0,00) (12)

V.-u=0 in D x(0,00)

where v is the viscosity, u : D x (0,00) — R™ is the velocity and
p: D x (0,00) = R is the pressure.




For simplicity we will assume v =1 from now on. The fundamental tensors
to (1.1) are

Fi(z) = L o

wn |z|™

ii 04 n—2)x;T;
{ E j<m) = 2(n—12)wn ( ‘$|nJ72 + ( |CC‘)'”‘ J)

which satisfy

S 2 ET =0

~AEY 4 %F =6;;6(x) in R
=il axj

in the sense of distributions. To introduce the nonstationary Stokes tensor,
we first define the fundamental solution to the equation:

1 2y
I'(x,t) = (4mt) 2 eXp( 4t ) if t>0
0 if t<0

which satisfy %—I; — AT = 6(t)d(z) in R™ x (RT U {0}) in the sense of

distributions.
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The fundamental tensor for the nonstationary Stokes equations (1.2) are

.. T(y,t

= (51‘]‘1—‘(%, t) + R R P(.’I? t)
FTi(z,t) = 20 =

wn [z[™

which satisfy

(ET”)t—A(ET”)Jr aa; (FT") = 0;0()d()
S G (ET) =0 in R"x (R*U{0})

in the sense of distributions.
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By the easy calculus, we can obtain the following result.

ET9(z,t) = 0;T(z,t)— T;Tgl“(x,t)
dij mzxj /f 1~
. n— a? d
(|x|n |:C|n+2 a

Proof.
Let w(z) = (n_l) Jrn |xr(y|n) >dy which satisfying

7 e _ 1 _r?

()~ 21) = — Ly o (-5)

o(0) = —2 . 2/(0) =

(n—2)(4tm) 2
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By uniqueness of the solution of O.D.E., w is the unique solution of the
above equation. Solving this equation, we obtain

w(r) = — = e4tdsda w(0 r=|x|.
O =~rE b @ ), +u(0) =l
It says that
2
0“w _ _a:ia:jF_(%_nxixj) 1 ] /Tsnlei
0z;0x; r2 rn 2 (4tm)2 Jo
L (% _ ity )L /\/ﬂ " e da, = lz|]. C
7n2 T.n rn+2 ) 0 9 L

Therefore we prove the lemma.

Definition
We call D C R™, n > 2 is Lipschitz if for every Q € S(= 0D),
there is a ball B(r,Q) = {P € R"||P — Q| < r} and a coordinate

system such that

B(r,Q)ND = B(r,@) N{(z',2n) | 2n > ¢(z'), [Vl < M},




By a cone, we mean an open circular truncated cone. For each Q € S, we
assign a cone (@) such that there are three cones 71, v2,7v3 with vertices at
origin and axis along x,, satisfying

NCR\{0}Cvw, Mm+QCA\{Q}Cr+QC13+Q

We define the single layer potential of f for the stationary Stokes equations :

{ u'(X) = (BY x f1)(X) = [¢ BY(X — Q) (Q)dQ (1.3)
p(X) = (F7 = fI)(X stj X Q) f(Q)dQ. '

where d(@ is the surface area measure. Similarly, we define the single layer
potential for the nonstationary Stokes equations:

{ui(x ) = (ET”*fJ — [ [y BT(X = Q,t — 8)f9(Q, 5)dQds
p(X, 1) = (FTV  f1)(X fSFTﬂ (X — Q. (Q.1)dQ.

9 /159



We remark that the expression of the pressure in the single layer potential
involves only space integral on S. This implies that the nonstationary Stokes
Theory is lack of time control and this cause some significant difficulties to
develop higher regularity theory for the Naver-Stokes equations and Stokes
equations. In fact, without a measurable sigularity assumption of boundary
data in time variable, we can not achieve the regularity in the interior in
time. In principle, the time regularity in the interior is most the same as the
regularity of the boundary data. We need to find the trace formula for Vu.
When z ¢ S, from direct computations for stationary case we have

i _ 1 o X =Qr o X Qo Xi— Qi
Di(a) = zwn/s< ux —q T x —qir T X —qp
X — Q)(X; — Q)X — Qu)\ 4
! )|(XJ_ Q‘,ﬁg : k)>fj(Q)dQ-
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On the contrary, the nonstationary case is much more complicated.
Considering the integral expressions,

Dkui(iﬂ) =Ag+ A+ A+ A3

where
/ /‘5”3 Q. — $)£1(Q, 5)dQds,

T — Q; z; — Qi
i d; d;
//( TaR T gr T o

(B QZ)(T; = 8]4)(% - Qk)) D@ — Q,t — ) f(Q, s)dQds,
R s T T T
/ / I:c - Q|2 5T = Qo= 5)f7(Q, 5)dQd

= Q x; — Q;
/ / ( S g Q|”+2 MR R e QJn+2
(21 — Q)(x; — Q) — Q) ) / VT 1t o 150, 8)

o= QI+

n(n + 2)
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§1

We let Q = D. The following facts are going to be useful. We assume the
boundary of the domain  C R" is flat and N(P) is the exterior normal
vector at P € 02. Let w, be the surface area of the unit sphere in R".

Lemma 3.3
We have for all e > 0

AN
lim L (Xi = QIN(Q) ;) 1”’
XeQ—-P Wn, QﬂaB(P,e) ’X _ Q|n
and
CONY. O, _ y
lim L / (Xi — Qi)(X; Q;)(Xé QINIQ) 4
XeQ=P " JanoB(Pe) X — Q"
. _2n%r?;_+2) if ’L:]:k
- —m otherwise

where N (Q) is the exterior normal vector at Q) € QN IB(P,¢).
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e

We have
Xi — Q; B 1 P —Q;
dQ = —2N*(P) + p.v.— Exinl 21Ty
®) Wn JoonB(pe [P — Q"

lim — _
X€Q=P wy Joonp(pe) | X — Q" 2

and
. (Xi — Qi)(X; — Q) (Xy — Qr)
m = [ PR aQ

L (VU(P)o + NI (P)ou + NH(P)5y) + - N¥(P)NI (P)N*(P)

1/ (R_Qi)(Pj_Qj)(Pk_Qk)dQ
20

2n
+'p’Uw—n |P—Q|"+2

where N%(P) is the i-th component of the unit normal vector N(P) at

P e 09.
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Using the Lemma 3.3 and Lemma 3.4, we can show the trace formula of
stationary equation for f € L?(99).

(Dpuw?)L = Jim D' (X)
1 .
= £ (N¥(P)FI(P) — N*(P)N'(P) < N(P), /(P))
+p.v. . DyEY (P - Q) f(Q)dQ,
T _ 1 . k
pe(P)= Jim p(X.6) = FZN(P)-f+po. [ A(P-Qr(QQ
where we denote ” + 7 for interior and 7 — 7 for exterior. Now we choose

f(Q) = e;, where ¢e; is the j-th unit vector, and obtain

lim = - /—Méij+Xi*Ql6jk+X Qjéde
o

Xeaop o X =Q X =Q" X =-QI
_n (X — Q) (X) — Q))( Xk — Qk)
2wn /BQ |X _ Q|n+2 dQ
= % (N*(P);; — N'(P)N?(P)N*(P)) + p.v. BQ DyEY (P — Q)dQ.
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Considering the relation

lim LR Q= —NUP)+pu.— | ——Flg
Ll W g Tl R R ol Ry s T
we have
g Xz_Qz Xk_Qk: Q
1 _ ) y j
i B[ Rart X gt iR gh

=] i(Nk(P)(;z] - NJ(P)(szk - NZ(P)(S]]C)

1 P —Q; — Qg P —Q;
ﬂ’-“-*/ —p ikt 85 + 8 dQ.
2un Jon IP—Q " |P Qv I P—qQr*

Hence comparing with the trace formula, we conclude that

g (Xz_QZ)(X_Q)(Xk_Qk)
XGhQHLP “’L /89 |X7— Q‘n7+2 dQ
= ;7} (Ni(P)djk + NI(P)dy, + Nk(P)(Sij) I %Nj(p)Nj(P)Nk(P)

tp /OQ (P — Qi) (P; — Q;) (P — Qk)dQ

P=qp+
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Now we are in position to compute the trace of time dependent double layer
potentials for Stokes equations. To this purpose we assume our domain is
flat near P € 9D and take a small cylinder C'(P,t,¢,) centered at (P, t)
such that C(P,t,€,0) = B(P,€) x (t —6,t). OC is only the lateral boundary
of the cylinder C. We are going assume

e=o0(Vd) as &§—0.

We are interested in computing

o g
lim / ETY (X — Q,7 — s)dQds.
(X,1)=(Pt) Jo(Pyt,e,6)ndD ON(Q) ( )

where Dy = D x (0,00). Let

Hij(X,7) = ETY(X,7) — 6;;T(X, 7).
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From the Stokes equations and integration by parts, we have that

0
—H;;(X —Q,7 —s5)dQds = By + By + Bs
/r9(C(P,t,e,6)ﬂD+) ON(Q) i )
where
B1 = —/ (Hij(X—Q,T—t-i-(S)—Hij(X—Q,T—t))deS
B(P,e)nD

By, = / FT'(X — Q,7 — s)N'Q)dQds + O(6)

d(C(P,t,e,6)ND)

0 0
= /B@,em (azv(@)H”(X —OT Y e X — QT it ‘”) /
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From the definition FT?(X — Q,7 —s) = 27=50 2i=%/ | emma 3.3 and

Wn, |X7Q‘ﬂ1
3.4, we have
1 X;—Q;
lim B, = LI 2I NYQ)dQ
60 wn JaB(Ponp) | X — Q"
1 1 . ]
= ——4,; — —N'(P)N(P).
5,0i = 5 V' (P)N?(P)

It is not difficult to see that

@I @E 0ij
dQ@ =
/83+(0,1)mD Q|2 2n

1 n
n—1 2
—af)da = =I'(<).
/0 o™ exp(—a“)da 5 (2)

We are assuming that (X, 7) converges nontangentially to (P, t). Since
e = 0(\/9), we see that

and

X — ONXs — O
hm Bll = hm ( 1 Ql)( .72 Q])
00 6=0 JB(P,e)nD X - Q|

. d;j (Xs — Qi) (X5 — Q)
+ lim [( J -n I J
6=0 B(P,e)nD |X - Q|n ‘X - Q|n+2 18 /159

(X —Q,7—t+6)dQ




Similarly, we can show that limg_,g B1s = 0. It is easy to show that
lims_.y B3 = 0.Therefore
0 1 s -
lim ——H;;(X —Q,7—5)dQds = ——6;; — =N*(P)N’(P).
=0 Ja(o(P,t,e,5)ND4) 8N(Q) ! 2n Y 2

It remains to compute

0
—H;i (X —Q,7—5)dQds = A1 + As + A
/80(P7t,e76)r‘1D+ ON(Q) i ) PR
IS Xe—Qr , , X;-Q; Xi = Qi
A = — 61" 5 J 5 7 @
! ;/H/ag(p,em[ ’|X—Q\2 o —qp T x =P
k=n +
(Xi —Qi)(X; —Qj) 0
Ay = 72/75 6/@(}36)@ ST ST - @t - N (Q)dQs
Az =

Xr — Qg X; —Qj Xi —Q;
+ nd; +n(5'k
k 13 /t 6/€)B(P )ND { YIX — QT2 YIX - Q|2 TIX — Qnt2

06~ Q0 = 9:)(Xe =00 [/m P

k
g N (Q)d6
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From Lemma 3.3 we have

. Xi — Qr X; —Qj X; — Q; QiQ;Qx
| bii 5 5 _
ot m,em[ X —ql T g T X =g~ TP TR
X-Q
N*(Q)d =
@57 ="

and hence considering the symmetry and polar coordinate we have

o Xe-@ . X-Q . Xi-@
JmAr = iy dB(P,e)nD { YIX -QP o X —QP? i IX - Q2
(Xi — Qi) (X — Qj)( Xk — Qk)] NE@Q)d( X-Q )/t T(e,t — s)ds

- 2
(n+2) X —qp =l Jis

=0
Under the same token we also get

lim A3 =0.
6—0
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Finally we have

. . (Xi — Qi) (X, — Q) ( Xk — Qk) 1k X-Q
lim A, = 1 N d
55072 5230 dB(P,e)nDND X —QJ? @ (|X - Q|)
e 1 €
'/H 26 —s) @rt—s)% P
1

and obtain

lim 0 Hi;(X-Q $)dQds ! )

o Hif (X —Q, 7 — = ——0ij5-
60 Jac(p.esynp, ON(Q) 7 2n "
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Therefore combining all the previous computations, we have

0
lim —H; (X —Q,7 — 5)dQds
3=0 Jo(Pt,e,5)naD.. ON(Q) il )
0
= lim / —H,;i(Xg, 7 — s)dQds
5%0[ a(C(Ptes)nons) ON(Q) i(%a )
0
— —H,;i(Xg, 7 — s)dQds
/80(Pt,e,§)ﬁD+ ON(Q) i(%a )
1 1. ]
_ T s Lo j
2n5w 5V (P)N (P)
— lim (X —Q, 7 —s)dQds
§—0 aCtezS)ﬂD+ 8N(Q) Hi( )
1
- ___ 5. _ _ i J 5.
i 2N (P)NI(P) + 2n5”
= —SN(PINI(P)

2
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From standard computation for heat equations we have

0
lim /
(X,7)=(Pt) Jo(c(Pes)nDs) ON(Q)

NX —Q,7—s)dQds = 1.

Thus
lim J Eij(X —Q,7 — s)dQds
=0 Jopresynon. ON(Q)
=% C(Pt,e.5)N0D i 5N8(Q) G =Qhir =)t
i C(Pt,e.5)N0D aNL@)HU(X =G =l

1

1 . .
_ s T J
50 — 5 N'(P)NI(P).
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Although there is a bump along the normal direction, the tangential
derivatives of single layer potential are continuous. We let

el =< e!, N(P) > N(P)+ < €', T(P) > T(P), where T(P) is tangent
vector at P € dD. Hence we have

Diuj(Pa t)

lim / g
(x,;1)eDy—(Pt) Jop, ON(Q)
1

= SNU(P)F(P)~ NUP)NY(P) < N(P), f(P) >

+p.v. D;ET*(P — Q,t — s)f*(Q, s)dQds
8D+

ET*(X —Q,7 - 5)f*(Q, s)N'(P)dQds
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§1

With the same argument for the velocity, we have

lim p(X,t) = —% < N(P), f(P) > +p.v. /8 ; FL.(P—Q)f*(Q, t)dC

(X,s)eDy—(Pit)

We define the conormal derivative

ou ou
22 Np.
ov ON p

Ou+ 1
O (p) = £2 1(P) + K £(P)

where

Ki@)=pv. | S0P -t = 9/4(Q.5)dqds

_— / Fu(P — Q)1*(Q, )dQ.
oD

4
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§2

§ 2. Caccioppoli inequality.

Let (u,p) be the solution of the Stokes equations in (0,00) x €

ug — Au+ Vp =0, (2.1)
dive = 0. (2.2)
Fix (20,%0) € (0,T) x R, where xg = (x0,1,- - ,%0,,). Take r > 0 so that

0 < r < 3 min{y/%o, dist(zo, 9Q)}. Set B, = B,(zg) and
Q, = B, x (—1"2 —|—t0,t0].

1
IVell3, < Ogllul, (23)

Our aim is to show the proof of the above lemma.
Choose ¢, € C°(R™), ¢, € C3°(R) so that ¢,(z) =1 on B, = B,(z) and
¢r(z) =0 on BS,, and ,.(t) = 1 on (—r? + tg,to] and 1,.(t) = 0 on

(—OO, to — 47’2] .
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Let N be the fundamental solution of the Laplace equation

n(2 — n)wy|z|"=2’

Define a function v by v(z,t) = [p. N Y)[or(y)Vy X u(y, t)|dy. Later
we will see that V x v is comparable to qﬁr

Take inner product by V x (¢,v) to the equation (2.1) and integrate over
Q). By the orthogonality of V and V X, we have the identity

0= /(ut — Au+Vp) -V x (¢ppv)dz
Q
= / u -V x (¢pv)de — / u- AV x (¢pv)]dz. (2.4)
Q Q

Now we investigate the properties of v to derive Caciapolli inequality from
(2.4).
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Since V X (¢p,v) = V¢, x v+ ¢,V X v and Av = —¢,.V X u,
A[V x (¢p0)] = V x [(Adp)v + 2(Vy,) - Vo — ¢2V X ]
Hence (2.4) can be rewritten by

Oz/ﬂut-Vx(¢>rv)dx+/ﬂu~V><[¢%V><u]dz

- [ w9 (oo + 2(9r) - Vil (25)

Note that [, u; -V x (¢v)dx = 34 [ u-V x (¢v)dz, since
4 u-V X (¢ppv)da = / ug -V X (¢dpv)de +/ u-V X (¢pv)dx
dt Jg Q Q

and

/ u-V X (¢pvp)de = / v - (0, V X u)dx
Q n
= / (¢rV X ug) - N * (¢, V X u)dzx = / (60 V X ) - vda

n

= / ug -V X (¢pv)de.
Q
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Note also that

/u.vX[¢$vXu]dx:/¢§|vXu|2dx
Q Q

and
/ WV % [(Ad)v + 2(Vey) - Voldz = / V x - [(Ad)v + 2(Ve,) - Volda
Q Q

Hence (2.5) reduces to the identity
Lo T 5 (¢pv)dx +/ H2|V x ul?dx = / V xu-[(A¢)v +2(Vé,) - Vulda
(2.6)
Now multiply ¢, to (2.6) and integrate over (0, tp), then we have the
identity
fo 2 2
/Qu(to) -V x (¢TU)(t0)dx+/O w(t)/nqﬁr\v X u|“dzdt

- Oto ¢;(t)/gu.v T +/0t° wr(t)/ﬂv X u- [(Adr)v+ 2(Vr) - Voldzdt

—I+1I (2.7)
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By the definition of v we have that
[ ulte) ¥ x @r)to)dz = [ 6,9 x ulto) - otz
Q Q

=~ [ Bvlto) vitopiz = /R | Valto)Pds.

By the properties of the ,. and ¢, we have

to—T‘2 1
I< % / lu|(=|v] + |Vv|)dzdt

r ro—4r2 J Ba,. r
C to—’r‘2

< (lullz2Bony 10l L2nsn-2) + ||l L2(Bo,) VY L2)dE
r ro—A4r
C t077.2

£ ullL2(Bs) [ V|| L2dt
r ro—4r?2

to
< / # / el (IV2, [0 + [V, || Vo] dardt
0 Q

% 1 1 1 [t
< [ bellulzaco Glol o, + F190l2)at < 5 [ el I Vol et
0 T T T 0
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Note that v =

Xx X f]Rn N(J’J - y) X [¢r(y)u(y7 t)]dy - fRn N(m - y)[(vy¢r)(y> X u(y, t)]dy-
ence

Vexv=VyxVx L N(z —y)[or(y)uly, t)|dy

~Vex | N@=y)l(Vydr)(y) x uly, D)]dy.

Recall Biot-Sawart law that
VxVxf=-Af+Vdif

and

div, L N(z —y) x [¢r(y)u(y, t)]dy = . N(z — y)divie, (y)u(y,t)]dy

= | N(z = y)[(Vyor)(y) - uly, t)]dy,
since divu = 0. Hence we have the identity
Vxv=¢u+VNx*[(u-V)p,] =V x Nx[(Vo,) X u. (2.8)
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Recall Sobolev inequality that

1l Lresnp @ry S IV lle@n), 1 <p <n
and Calderon-Zygmund inequality that

IV2N * fllo@ny < I1fllLr@ny, 1 < p < 0.
By Sobolev inequality and Calderon-Zygmund inequality,

[0l 2n/ -2y < ClIVoll2 < Clldrullp2 + c[VN + ((Vér) X u)l| 2
< Cligrullzz + e VAN * (Vor) X w)ll o/
< Cllgrull e + cll[Vor|ull pansmra) < CllullL2(p,,)- (2.9)
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Hence (2.7) reduces to the following inequality

to
1/ |Vv(t0)|2da;—|—/ ¢(t)/¢$\vXu|2dxdt
2 Jrn 0 Q

c o[ 2 C
=p dt < Sllelgu)- 2.1
=02, e [ull2(p,,)dt < 2 lull72(Q,) (2.10)

This implies that

C
Vo)l Z2@ny + IVulli2(g,) < 72”““%2(@%)-

Now we would like to derive the Caciapolli inequality for the higher
derivatives.

1
IVulto)lz2(s.), [Aul @) < C5llulles,- (2.11)
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proof. Take inner product by V x (¢, V X u) to the equation (2.1) and
integrate over (2. By the orthogonality of V and V x, we have the identity

0:/(ut—Au—|—Vp)'V X (¢rV X u)dx
Q
= / ug -V x (¢,V X u)dx — / Au- [V x (¢.V x u)]dz. (2.12)
Q Q

Since V x (¢2V x u) = Vo, x V X u+ ¢,V x V X u and
V xV X u=—Au, we have

/Au [V x (¢2V x u)]d /¢]Au|dw+/Au [Vé2 x V x uldz.
Note that

/ ug -V x (¢2V X u)dx / P3|V x ul®dzx.
Q

2dt
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B 82 53 54 83 50 g7 5 5o
Hence, (2.20) reduces to

& [V xuPas+ [ GauPas = [ Au- (76 V x ulda.
(2.13)

2dt

Now multiply ¢, to (2.13) and integrate over (0, %), then we have the
identity

1 e
2/Q¢2\V><u(t0)|2dx+/o ¢(t)/g¢zmu|2dxdt (2.14)

to 1 to
_ Au - (V2 1 / 2 2
/0 @z;(t)/g w- [Ve2 X V x w]dzdt + 2/0 1/J(t)/Q¢TW « ulPdzdt

(2.15)
— T, (2.16)
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Apply Holder inequality to the right hand side of (2.14), we have

C [t
1< [" o) [ orlsul|Vuldode

T 0 [9)
to C to

¢ / V(1) / o7l Aul’dwdt + — / (1) / [Vl dedt
0 Q ETr 0 Q
% 2 2 C 2

< 6/0 w(t)/géf)rm@ﬂ dzdt + —5[|Vulzaq,,)

to C
2 2 2
< 6/0 ip(t)/QgZ)T]AM da:dt+7er4||u||Lz(Q4r)a

and
to— r2

II < = / ¢V x udzdt < _HVUHLQ(QQT) = 4”““L2 Quar)’

—4r2
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Therefore (2.14) reduces to the inequality
1 to
2/ S|V xu(to)\2dx+/ ¢(t)/ Q2| AuPdzdt  (217)
Q 0 Q

to CE
§e/0 w(t)/ﬂﬁmu\?dxdt—i—M\\u|]%Q(Q4T). (2.18)

Taking € = 1/2 we have

to CE
[ o9 xutwPae+ [“o) [ st ulg, ) (219

This implies that

C.
IV x u(to) |32 B T HAUHLQ(QT vy Cllull? (Qur)*

L]
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Take inner product by V x (¢,v;) to the equation (2.1) and integrate over
2. By the orthogonality of V and VX, we have the identity

0= /(ut — Au+ Vp) -V x (¢rv)dx
Q
= / up - V X (ppvy)dz — / u- AV X (¢rvy)]da. (2.20)
Q Q
Since V X (¢pv) = Vo, X vy + ¢,V X vy and Avy = —¢,V X uy,
AV x (¢pv)] = V x [(Agy)vs + 2(V,) - Vg — 2V X wy]
Hence (2.20) reduces to
O:/Qut-v X (ngvt)der/Qu-Vx [0V x wy]dx

_ /Qu TV x [(Agp)vr + 2Vey) - Volda. (2.21)
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By the definition of v note that

/ ur - V X (ppvy)dz :/ |V |2d.
(9] n

Note also that

/u~V X [V x ws]dx
Q

= do—=— ’d
/queru V X uydz 2dt/q§r|v><u| x

and

/ u-V X [(Adr)vr + 2(V,) - Vuylde = / V xu-[(Apr)ve +2(Vo,) - Vug|da
Q Q

Hence (2.21) reduces to

2dt/ ¢>2|V><u|2dm+/ |Vvt\2dx—/V><u [(Ady)vs + 2(Vy) - Vuy]da.
(2.22)
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Now multiply ¢, to (2.22) and integrate over (0, %), then we have the
identity

1 2 2 o 2
2/Q¢,,|V X u(to)] dx—l—/o P(t) /Rn | Vo | “dzdt
to
- / o(t) / V x u- [(Ady)vs + 2Ver) - Vorldadt
0 Q

1 [t
+—/ ¢'(t)/¢Z|V><u|2dxdt
2 Jo Q
_I4+1I (2.23)
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Recall the previous lemma and its corollary that
=il
Vullz2g,) < Cr lullL2(@s,)-

By the same reasoning for the estimate of v and w of (??7)-(2.24), we have

lwellr2 < Cl|Vwtll ponsmray < Cllugllr2(s,, ) (2.24)
1

IVwellz < ~lluell 2(s,.)- (2.25)

V20|l 2 < Cll¢rV X w12, (2.26)

[vell p2nsn-2 < ClIVoell g2 < Clluellp2(,,)- (2.27)

42 /159



Apply Holder inequality to the right hand side of I-IV then we have

to 1 1
I< / w(t) / IVl gloel + Vel
0 B27‘

to
< A YOI Vul L2 Bz,«)[ [vell onsn—2) + *IIWtIILz]

to
< ; w(t)||Vu||L2(Bzr)[;vatnﬂ]dt

IN

to C
2 2
6/0 P (t) /R" |Vu|“dxdt + Er_2||VU||L2(Q2r)
e 2 e
<e€ 1/}( ) |V’Ut| dxdt + _4 ||u||L2(Q47~)’

to—r2 5 C 9
< / / Vuldo < SIVulg,) < Sl
to B27‘ r
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Therefore (2.23) reduces to the inequality

1 to
5/ ¢3|V><u(to)\2da;+/ w(t)/ |V |2dadt
Q 0 R
to Ce
Se/o w(t)/R VolPdedt + Slulsg,)  (229)

Take € = 1/2, then we have

to Cf
/¢$|vXu(to)|2d:p+/ w(t)/ VolPdwdt < S ullZag,, (229)
Q 0 R™ r
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§3

§ 3. L? solvability of Dirichlet and Neumann problems

for the stationary Stokes equations.

In this section, we prove the existence and uniqueness of solution of the
stationary Stokes equations for the general Lipschitz domain. After
Verchota found the way the existence and uniqueness theorem for the
Laplace equations, there have been considerable efforts to extend the
solvability theorems to more general systems incuding the Stokes equations,
Elastostatics and Maxwell equations. The main ingredient of the argument
by Verchota is Rellich identity which provide the closed rafe theorem for the
layer potential operators. The same idea to the Stokes systems were applied
by Faber-Kerig-Verchota in 1988. We present their proof here with main
modification.

First we note the L? bounded property of Cauchy integral operator can be
extend to systems. The argument does not have any maximum principle and
differentiate single equation and systems. But, unlikely C' domain, the
integral operators like double layer is not compact and hence we can not
apply Fredhorem theory directly. Verchota was akle to replace the
compactness by Rellich identity in the Lipschitz domain case. 46 /150
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The main results are as follows: Let D C R",n > 3 be a bounded lipschitz
domain with connected boundary S = dD. Suppose

g€ 4(S) = {1 € 1) | [ 9(QN(@)dQ =0},
Then the Difichlet problem

Au—Vp=0, V-u=0 in D
(D) u=g a.ein S in the sense of nontangential convergence
[lu*]|r2(s) < o0

has a unique solution, where u*(p) = supger(p) |[u(Q)| is the nontangential
maximal function. Moreover if g € L2, i.e., it has first derivative in L%(S),
the solution verified the estimate

(Vu)*[lL2(s) + 1) N e2(s) < Cllgllzas)
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Similar result holds for the exterior domain D_R™ \ D. The solution, in the
case when g € L?V(S) can be represented in terms of double layer potential
and when g € L2(9) is terms of single layer potential. We also prove the
unique existence of solutions to Neumann problem corresponding to

connormal derivative %:

Au—Vp=0, V-u=0 in D
(N) g—;j =g a.e. in S in the sense of nontangential convergence
lu*lL2 + [[(Ve) || 2 + [[p*]| 2 < oo

We show that if g verified fsg = 0, there exists unique (u, p) solving (N).
Notations: Capital X,Y, Z denote points in D (= D) on D_, while P,Q
denote points on S.

Definition

We say that u(X) converges nontangentially a.e. to f(Q) if for any regular
family of cones {T'}, we have limycrg)qu(X) = f(Q) ae. Q €S.
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© Relliich estimate.
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§4

§ 4. Rellich estimate.

Given f € L?(S), we define the single layer potential

{ w(X) = Ex f(X) =Df(X)
p(X) = Fx f(X),

(see (3.3)) then we have

V-u(X) =0, X eR"\S

Au—Vp=0 in DiorD_

X7 Hu(X)| + [Vu(X)] + [p(X)] + [X[|Vp(X)| = O(1X|™")
Ap=0 in R"\S.
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The L?- boundedness theorem for double layer potential operator and
maximal function estimates of Calderon-Zygmund singular integral operator
yield

1(Vu)*||z2¢s) + P |25y + 1wl z2esy < ellfllza(s)s
where ¢ depends only the Lipschitz character of D. Define the tangential
gradient of u on S by

Veu(Q) = Vu(Q) ~ S(QIN(Q), (Veu)s = i, i NY)
then by the trace formula in section 3
Viuy = Viu_.
hence we obviously notate 7 4+ ” for interior and ” —” for exterior. Our goal

is to show the existence of a constant ¢ > 0 independent of f € L?(S) such
that

_n 1 1 1
c H(§I+K)f”L2(S) < \|(*§I+K)f||L2(S) < C|\(§I+K)f||L2(S) (4.1)

Define a vector field a € C§°(R") such that on S, - N(Q) > ¢ > 0 for
some C independent of Q.

51 /159



From integration by parts
fs Ot dQ =0

s BmdQ = — [ fdQ (4.2)
Jou-2dQ = + [, [Vul?dX

/(N-a)p2dQ = 2/aiNijuip—aiDjuiNkauj (4.3)
S S
+a? Dypu' NV Diu? dQ
+ D;alp? — 2DjaiDjuip + 2DkaiDjukauj
Dy
—2DjakaukauidX
/ N -a|Vu|?dQ = 2 / o' Dyud (N*Dypw? — Nip)dQ (4.4)
S S

+ D;a|Vul? — 2DjaiDiuijuk + 2Dy D pda.
Dy
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3

/ N - a|Vu|?dQ = 2/ o' DjuF(N*Djuf — N Dyu*) (4
S S
+alp(N*Diu* — N Dpu)dQ
== D;o | Vu|? + 2DjaiDiuijuk — 2Dpa’ DiuFpe
Dy

The integral identities (4.4),(4.5),(4.6) are Rellich -Necas identities. From
definition of conormal derivative, we have:

Lemma 5.1

Ou4

Ip2llz2(s) < =5 = Mlz2s) + IVuzllzzgs) < llp£llzaes) + 21Vuzllzzs)

Lemma 5.2

| A

(@) [IVulltap,) < CHVtuHLz ) 1%l z2(s)
(@) [[VullZop_y < < dI%zzes) (IVeullzs) + | fg udQ))
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3

Lemma 5.2 follows from (5,10) and Poincare inequality.

() IVutllz2(s) < ell B llzags)
(i) [| Va2 < ¢ (||W||L2(S) + 1 fyudQ))

Proof
In (5,13),

0
/SN~04|VU|2dQ = 2/504-N|Vu|28iN
+(a - Vu*pN* — o - pDpu®)dQ
+ [ Dia'|Vu|® +2D;a’' Diu* Dju* — 2Dya’ DiuFpd X
Dy
ouk

= Q/S(Q'n|Vu|2 Vka )dQ

+ [ Dia'|Vul® +2D;a' Diu* D;u* — 2Dya’ DiuFpd X.
Dy
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Thus
ouF
— | N-a|Vu]?dQ = -2 - N|Vu|? —
[ o Nvupgg
:F/ D;a'|Vu|? + 2D;ja’' Diu* Dju* — 2Dy’ DiuFpd X.
Dy
Let

ou_
A:HVU—HLQ(S)a HiHLz DZ\/SudQ.
Using Schwirz inequality, We obtain that

A4 < ¢ (A28 +[Vulltap_y + 1Vl 2o 1P _rvsuppe) -

Then norm on p may be controlled lay the late side of Lemma 4.1 by the
estimate ||p*|[z2(s) < cl[pl|r2(s)- then, by Lemma 4.1 and (ii) of Lemma
4.2, we have

A* < ¢(A?B? + B?D? + AB® + A3B + B3D + A2BD)
Now, by considering the two case A < B+ D and B+ D < A, (ii) follows.
Part(i) follows similarly by (i) of Lemma4.2.
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(i) IVuslls <c(||‘9“+|| ||vtu||m<s)
@) 19l S)<cu )y + (@0 (el + | fy ).

Proof
We let A, B, D be as in the proof of Lemma 4.3 and E = ||Vul|12(g)
Then (4.3) and (4.6) yield

A4 <c (A2E2 + ||p*||%2(S)E2 + ||VU|I%Q(D_) + HVUH%?(D_)||p||2L2(D_ﬁsuppa)) .
Applying Lemma4.1, Lemma 4.2 and ||p*||12(5) < ¢l|pl]2(s);
A* < c(A’E*+ B*E*+ B¥E+D)*+ B¥E + D)+ A’B(E + D)).

By Lemma4.3, E < A < ¢(B + D) and (ii) follows. (i) follows similarly.
Now we state two Lemmas without proof.(see[FKV]). [
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3

Given 7 > 0 small enough

lIpll2(p,y < e ("7Hp+||L2(S) + |p(0)]) + enlVullz2(py)
[[Pl2(p_y < enllp-Ilr2¢s) + enlIVullp2(p_)

where ¢ depends only on S, ¢, depends only on 7 and dw

| \

Lemma 5.6

P+l L2es) < ¢ (Vuillr2(s) + 1p(0)])
Ip-1122(s) < c(lIVu-Ilr2(s) + | [y udQl)

where ¢ depends only on S.
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Now we can prove ||%||L2(S) are essentially equivalent to [[Viu|[r2(g)

[E +||L2 ) < ¢ (Veuy|lrzs) + [p(0)])
|1 % 5 1n2(s) < ¢ (IVeuylr2es) + | [gud@))

Proof
From Lemma4.1, Lemma 4.6 and Lemma 4.4, we have

ou ou
15 ) < ¢ (152 s Vel + O

and the first claim immediately follows. The second claim can be proved
exactly same way. The continuity of tangential derivative yield:

15 llz20s) < ¢ (155 llz2s) + | S5 ud@Ql + 1p(0)])
12 sy < e (125 s )+ | f5udQ))
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95. The Neumann problem and functional analysis.

From the trace formula, we have

8ui(
ov
where the kernel of K is defined in Theorem 3.3.
LS) = 1 e 1%9) | [ raa=0}

Q) = +3(@) + Kf(@),

and so it is the subspace of L?(S) of codimension n. Define L3 ()
by the codimension 1 set so that

13,(S) = {f € IX(S) | /S £+ NdQ = 0}.
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()31 + K : L3(S) — L(S) is one-to-one
(i) — LT + K : L3(S) — L?(S) is one-to-one

o
2

Lemma 5.3

(z)%[—{— K : L3(S) — L3(S) has closed range
(i1) — 1 + K : L%,(S) — L*(S) has closed range

Theorem 5.4

()31 + K is invertible from  L3(S) to LZ(S).
i) — 1 + K is invertible from L3 (S) to a subspace of L?(5) of codime
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Now, we can solve Neumann problem in D4 or D_.

Au—Vp=0, V-u=0 in D4y
(N1) % =g a.e. on S in the sense of nontangential convergence
[[(Vu)*||z2(s) + [lu*|lpz¢sy + [P L2¢s) < o0

Theorem 5.5
(i) If g+ € LZ(S), there exists, up to constant, unique u and p; satisfying
(N) in Dy

(ii) If g— € R(—31 4+ K), there exists, up to constant, unique u_ and p_
satisfying (N_) in D_.

(iii) There is ¢ depending only on the Lipschitz character of S satisfying

() llz2esy + [1(Vux) | L2(s) + [[(P£)*[|2s) < cllgll 2




Contents
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§6

§6. Dirichlet problem.

The solution to Dirichlet problem (D) is defined by the double layer
potential of a density function f such that

T B VR I e
u! (X) = SaN(Q)(Q X) Q) - F1(Q - X)N’(Q) - f(Q)dQ.

Then, again by the trace theorem, we have

ut+(Q) = :F%f(Q) + K*f(Q) forae Qe€S,

where K* is the adjoint operator of K in the Neumann problem. The L?(S)
estimate of nontangential maximal function [[u*[|2(s) < cl|f||r2(s) is the
same as the single layer potential. We let D denote the orthogonal
complement of ker(31 + K) in L?(5).
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56

Then by Theorem 6.4
1 * 2 1 * 2
§I+K :Ly—D and —§I+K R — Ly

are invertible, where R = R(—1I + K). Then,
T, =iI+KT =-iI+K,

{ us(X) = T((=31 + K*)"'g)(X)
u_(X) = T((3] + K*)g) (X)

are solution to Dirichlet problem in D4 respectively. The following theorem
states the existence of Green's tensor for Dirichlet problem:
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Theorem

Given X € Dy (D_) there exists a matrix Green's function,
G]k, 1 < j,k <n and harmonic function P]-X defined in Dy (D_) so that

(i), Gﬁ(@) =0forae Q€ Sin the sense of nontangential convergence.
(i), Ay (GR(Y) = BHY — X)) = 55 (PF(Y) =0

A (GY) — B X)) =0 in Dy(D)

(iii), 8N( vy (Gi(@) — E*(Q — X)) — N*(Q)P*(Q) exists forae. Q€ S
in the sense of nontangential convergence.

(i), [I(VGH) llz2(s) + (P )*[z2es) < e < oo,

where the nontangential cone is taken with respect to a family of cone
excluding X.

| !
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With the Green's tensor, we can state the unique existence theorem for
Dirichlet problem.

Theorem

(i) If g € L%(9), there is a unique u and unique p satisfying the Dirichlet
problem (D) in D

(ii) If g € L*(S), there is a unique u and unique p satisfying (D) in D_
(iii) [1(ut) | z2(s) < cllgllzz(s)-

(iv) If g € L3(S) N L%, for D and g € L3(S) for D_, u satisfies

(us) M L2(s) + 1(Vue)*llz2(s) + [1(£) [l 22s) < cllgllrzs)
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§7

o7. L*- estimate Via the estimate of the Poisson kernel.

In this section we study the LP-Dirichlet problem. Optimal estimates are
obtained when the dimension n = 3. In the case of n > 4, we establish a
weak estimate of solutions for certain range of p. We consider the Dirichlet
problem for the Stokes system

—Au+Vp=0 in D
divu=0 in D
u=g on §S.

In section 2, it is shown that there is € > 0 such that if

g € LL(S),2 — € < ¢ < 2+ ¢, then there exists a unique u and a unique
g(modulo constant) satisfying the-Dirichlet problem and u* € L%(S), where
u* is the nontangetial maximal function of u. Our main results are as
follows:
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Therem 5.1
Let D be a bounded Lipschitz domain in R3, with connected boundary,

| ‘

Given g € LE°(S), there exists a unique solution u and p(modulo constant)

to the Stokes Dirichlet problem. In fact

l[wllzoo(sy < 119l Loo(s)-

Moreover, if g € C*(S),0 < a < o, then u € C*(D) and
lullga(p)y + sup 6'(X)|Vu(X)| < llgllcas).
XeD

where §(X) = dist(X, 5).
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Therem 5.2

Let D be a bounded Lipschitz domain in R? with connected boundary.
Given g € LZ(S5),2 < q < 00, there exists a unique solution (u, P) ( P is
unique up to constant) to Dirichlet problem and u* € L7(S). Moreover we
have

U™ || zacsy < cllgllracs)-

V.

Theorem 5.2 follows from the L>- estimate and L?- solvability and the real
interpolation. Moreover the nontagential maximal function estimate of
Theorem 5.2 implies

lullze, D) < ellgllzacs)-
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Therem 5.3

Let D be a bounded Lipschitz domain in R",n > 4, with connected
boundary and 2 < ¢ < % Then for any g € LL(S) the unique
L?(S) solution u, satisfies

nq
n—1

[ullLa(py < ellgllracsy, a1 =

As a consequence of Theorem 5.1, we state without proof the following
theorem for the homogenous Difichlet problem

—Au+Vp=f in D
(0.5) divu=0 in D
u= on S.
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Theorem 5.4

Let D be a bounded Lipschitz domain in R? and % < q < 3. Given
f € w? (D), there exists a unique u and a unique p(up to the constant)
satisfying (0.5) and u € w{(D). Moreover

| ‘

ullwg(py + Pl ey < ellfllws, (D)

The proof of Theorem 5.4 may be carried out using Theorem 5.1, L?-
estimate in [FKV] and the argument by Jerison and Kenig.

The key step is to show that the Green's function has certain decay when
|X — Y| is large in composition with §(X). To do this, we use Rellich
identity, Caccioppoli inequality and the Dirichlet problem is solvable in L4
for some g < 2. In the case of n = 3, the estimates on the Green's function
yields the desired L°°-estimates.
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But when n > 4, it only gives some weak estimates. We remark that in
[Pipher-Verchota], it is shown that when the dimension n > 4, the LP
Dirichlet problem for the biharmonic equation in general is not solvable in
Lipschitz domain for ¢ > 2 larage enough (¢ > 6,n =4;9 > 4,n=>5). The
counter example they found in given by D = O x Ry where O is an open
subset of the unit sphere in R™,n > 4. It is noted that in [DK2] such
domain fail to produce counter -examples for the system of elastostatics.
We let (G(X,Y), P(X,Y)) be the matrix Green's tensor defined by

G(X,Y)=E(X-Y)—-vX(Y)
P(X,)Y)=F(X -Y) - PX(Y),

where (vX (YY), PX(Y)) is the matrix valued solution to the Dirichlet
problem of the stationary Stokes equations with boundary data

vX(Q)=E(X -Q) for Qe S
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Let X € Dand P € S and r = |X — P| < 2dist(X,S). Then

/ G(X,))"(@Q)|%dg < er =" if 2 ¢ < g <2+
S\A(Pr)

Proof
We apply the non-tangential maximal function estimate of u* to get

/ G(X, )" (Q)4dQ
S\A(P,r)

IN

cf l6x.QdQ
DNAB(P,r)

IN

dAf B - QP+ QP
DNOB(P,r)

Clearly,
/ |E(X,Q)|%dQ < cr(n=D=(n=2)g
DNOB(PAr)
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Also, note that

/ X (Q)dQ
DNOB(P,4r)

IA

IN

IN

IN

IN

/S I(UX)*(Q)I““’dQ)HQEO

B~ Q)I”e‘]dQ) e

—

0o n—2 ﬁ
(D= 55) t o
2+ 0 \/CT t(n—2)(2+€o) dt)

(=1 —(n—2)q_

Let Xo € D, R > 0 be small, and D(Xy, R) =
solution to the Stokes system in D(X,3R) and u = 0 on B(X(,3R)N.S. Then

/D(XO,R)

@
|Vul2dX < ﬁ/

DN B(Xo, R). Assume (u,p) is a

|u|?dX.
D(X0,2R) 76 /159



Define the conormal derivative

ou ou

g ON(Q)

—pN(Q)

The following is the main lemma.

Lemma
There exists €1 > 0 such that if X € D, P € S and
r =|X — P| < 2dist(X, S) then it follows that

96 _ pX 24 Tva_ 1
Lo B 05 Q) = PX N (@R < ()" g

where R > 3r and Xj is some point in D which does not depend on R.
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Proof

Fix Xo € D such that X is away from X and dist(Xo,S) > ¢ > 0. For

T €[1,3], let D(TR) ={Y € D | £ <|Y — P| < 7R}. It follows from the
Lemma ? in [FKV] and rescaling argument that

/ 22 (X,Q) — PX (Xo)N(@PQ
R<|Q-P|<2R vq

IN

oG
—(X,Q) — PX(Xo)N(Q)|*d
o i (5@~ PN @A

< ¢ / ViunG(X, Q)2dQ + cR"'[PX (Xg) — PX (Xo)|
OD(TR)

where Vi., denotes the tangential derivative on S and Xy is a point in
D(R) such that dist(Xp,S) ~ R. Integrating in 7 € [1, 3], we have
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/RSQ—PISZR

IN

IN

IN

oG

8 I/Q

c

(X,Q) — PX(Xo)N(Q)[?dQ

VG(X,Y)PdY + cR™[PX (Xr) — PX(Xo)|

R Jpir)

R?

c

< /
R* Jsr<iq-Pl<2r

¢ / G(X, Y)Y + cR™ ' |PX(Xg) — PX(Xo)|
D(2R)

IG(X, V)PAY + cR™'|PX (Xz) — P (Xo)
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§8 §8.1 §8.2 §8.3 §8.4

08. Maximum modulus estimate for the solution of the

Stokes equations.
§8.1 Introduction.

A maximum modulus estimate of the nonstationary Stokes equations is
presented. In the case of the stationary flow, Maremonti and Russo[1]
obtained a quasi maximum principle and Varnhorn[5] showed a maximum
modulus theorem for C1:* domain:

max lu| < C(92) max |ul,

x€N €00
where w is a solution to the stationary Stokes equations in domain Q. We
also note that Maz'ja and Rossmann[2] considered the maximum modulus
estimate for the stationary Navier-Stokes equations in polygonal domain. In
a canonical domain like ball, Kratz[5] found the best constant C(£2) such
that

1
max |u| < —n(n+1) max |lul,
rE€EBy 2 €0B;
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where Bj is the unit ball in R™. For a more general domain like Lipschitz in
R3, Shen[3] obtained a maximum modulus estimate and the higher
dimension problem is still unresolved.

The maximum modulus estimate of the nonstationary problem is heavily
entangled with the structural form of Poisson kernel and the solvability of
the boundary value problem is essential. As a classical result, Solonnikov[1]
solved the initial-boundary problem in C? domain for the isotropic Sobolev
spaces and later he[2] extended the solvability to the anisotropic Sobolev
spaces. The L? solvability for the Lipschitz domain was obtained by Shen|[?]
for any dimension and Choe and Kozono[3] considered the case for the
mixed norm potential spaces.
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§8

To be more specific, we state the nonstationary Stokes equations:

u—vAu+Vp=0 inQx(0,7),

divu =0 in Q x (0,7),

| (8.1)
ult=0 =0 in Q,
u‘aQX(O,T) =g on 90 x (OvT)7

where Q is C? bounded connected domain in R and 0 < T < oo and v is
the viscosity which we assume 1. In addition, we assume the boundary data
g satisfies the compatibility condition:

/ g-Ndo=0
o0

for almost all £, where N is the outward unit normal vector on the boundary.
Since nontrivial initial data can be treated by solving homogeneous
boundary value problems, we consider only the initial-boundary value
problems with zero initial data.
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Contrary to the stationary case, the quasi maximum principle fails, namely,
there is an unbounded solution whose boundary data is bounded.
Heuristically speaking, at the boundary point where the normal component
of boundary data has a jump discontinuity along an (n — 2)-dimensional
surface on the boundary passing to it, the tangential component of the
velocity blows up in the neighborhood of it. So we can not expect the quasi
maximum modulus theorem like the stationary case.

In this paper, we only consider the case that the space dimension is greater
than or equal to 3. Dimension 2 case follows exactly the same path with
logarithmic kernels. Denote E for the fundamental solution to Laplace
equation and I" for the fundamental solution to heat equation with unit
conductivity. For a given boundary point y € 92 N(y) is the outward unit
normal vector at y.
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We define the (n — 1)-dimensional convolution

S(f)(x) = | E(x—y)f(y)do(y)

oQ
for real-value function f : R — R which is just the single layer potential of
f on 0Q. We need a composite kernel. We define a composite kernel
function k(z,t) on Q x (0,7) by

or

o0 ON(y)
and a surface potential T for f by

T(f)(z,t) = 4 /0 /8 il = 9.t = )0 5)do o) s,

for real-value function f : bf R™ — R. We state our main theorem: For
given x € Q, T is the nearest point of x on 0f) such that

dist(z,09) = |& — x| and for a vector valued function v(x), we define the
normal component and tangential component to the nearest point by

on(@) = (v(z) - N@)N(@) and vp(z) = v() - (v(x) - N(2) N (@).
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Theorem 6

Suppose that the domain Q is bounded C? and u is a solution to (8.1) for
bounded boundary data g. The normal component of the velocity uy is

bounded and there is also a constant C'(§2) such that

t) < C(Q #)|.
(”)GQX(OT) (@, ) ( )(y,t)e%lgi{(o,T) 9y, 1)l

Furthermore, the tangential component of the velocity u satisfies that
,t) —VS(g-N ,t)—VT(g- N ,t
LS fur(@,t) = VS(g- N)r(e,t) = VT(g - Nr(a. )

<C(Q t
< O( )(yﬁt)ergg%ﬂ lg(y,t)

| ‘
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Define the modulus of continuity of f at = by
w(f)(r,z) = supyep, (m)no |f(y) — f(z)| and we say f is Dini-continuous in
Qif
v dr
1fl|Dini2 = sup [ w(f)(r,z)— < o0

€N JO r
for an 79 > 0. From a direct computation, we have VS(f) and VT(f) are
bounded if f is Dini-continuous on 92 and we obtain a maximum modulus
estimate:

Corollary

Suppose that the domain Q is bounded C? and u is a solution to (8.1).
Suppose g is bounded on 0S) and the normal component gy is
Dini-continuous. Then, there is a constant C(S2) depending only on € such
that

m max
(z,t)eQx(0,T) (y,t)€dx(0,T)

ax |u(z ) < C(©Q) ( 9y, 9] + ||gN||Dz~m-,aQ) |
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As a separate interest, we obtain an improved L? theory like Lemma 4.1.
When the L?(09) norm of the boundary data is bounded in time, then

|[u(-;t)|[2(q) is bounded in time. Consequently, the local boundedness
holds too(see Corollary 4.2.).
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8.2 Kernels on half plane.

To study the equation (8.1), we consider the case of

Q=0bfR} ={(z/,2,) € R", |2’ € R",0 <z, < 0o} and for the
notational simplicity we set D,, = 6%1- and double indices means summation
up to n. For notation, we denote x = (2, x,,), that is,

' = (21,22, -+, xp—1). Indeed, the symbol / means the coordinate up to

n — 1 and wy, is the surface area of the unit sphere in R".

We let I' be the fundamental solution to the heat equation such that

2
%, t>0
0, t<0

and H be the Newtonian potential of I' such that
Hzt) = [ Tw.0E@ - y)dy
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The Stokes fundamental matrix (F, ) for R",n > 3 is

1
Fij(xvt) = 6Z'jr(wvt) + (Tl _ 2)w DaciD;L’jH(xat)
n
(2 (,Un ‘:r|n7

where §(t) is the Dirac delta function and d;; is the Kronecker delta function.
The Green's matrix (G, ) for the half space R} is

Gij(z,y,t) = 0ij (I’(w —y,t) — D(z —y", t))
+4(1 — djn) Dy, / ' / D, E(x — 2)['(z —y*, t)dz
0 R" 1

ej(x7 Y, t) = (1 - 6jn) </ DmiE(:LJ - Z,, xn)r(zl - y,, Yn, t>d'z,
Rnfl

+/ E(z' — 2, 2,) Dy, T2 — V', yn, t)dz') )
Rn—1

where we denote z* = (2, —x,).
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The Poisson kernel (K, ) for the half space is defined by

_ 0Gi(zy.t)
- Oyn

= —20;j Dz, T(x' — /', xp,t) + 4Lii(x' — ¥/, zp, t)
—0ind(t) Dy, E(z' — ¢, xp),
mi(x' =y, xpn,t) = —20(t)Dy, Dy, E(x' =y, 2n) + 4Dy, Dy, A(z' — o/, 2
+4Dy Dy A2 — o, xp, 1),

Kij(@ —y, xn,t)

yn=0 — 5]?7,92 (337 Y, t)|yn:0

where we defined that
Lij(x,t) = Dy, / D, T(2,8)Ds, E(z — 2)dz,
0 Rn

Az, t) = / ['(Z,0,t)E(z' — 2, x,)d2’.
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L;j and A satisfy the estimates

C
|Dlo DR DT L (2, )] < -, (82)
v K $mo+3 (|z[2 + ¢) 37 2R (22 + ¢)3b
; c
|D']DmA(CC,t)’ — n— il ? (83)
't tm+%(|x‘2—|—t) 22+\JI

where 1 <i<mand1<j<n-—1(see[3]and [1]). The estimates (8.2) of
L;j and the estimate of the fundamental solution to heat equation I" imply
that

c

DY Dk Do K (0, t . 8.4

The solution (u,p) of the Stokes system (8.1) in 2 = R’} with boundary
data g is expressed by

ui(:c, t) = Z?:l fg fRn Kij(x/ - y/’ Tn,t — S)Qj(yla S)dy,d57

(8.5)
p(z,t) = Z?Zl fg Jpn (@' =y a0, t — 5)g; (¥, s)dy'ds.
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We have relations among L and A such that

> Li=-2D,,T,  Lin=Ln;+ Bin, (8.6)

1<i<n

where By, (z,t) = fR"—l D, T(x' =y 2, t)Dy, E(y,0)dy’ = 9 k(z,t) if

T;
1 # n and By, = 0. For further computation, we introduce Lebesgue spaces
and Sobolev spaces:

(@) = {f; /Q fPde < 0}, WMP(Q) = {f; /Q P + [V f]Pdz < 0o},

T
20, T; W'2(Q)) = {f; / /ﬂ P + |V fPdzdt < oo}.
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8.3 Maximum modulus estimate in the half space.

In this section, we consider the maximum modulus estimate in the half
space. The normal derivative D, I' has uniformly bounded L' norm with
respect to x,, on OR” x (0,7")(see (8.15)) and hence we focus only on the
kernel function L;;. By introducing a composite kernel  we are able to
identify the singular kernels. The following lemma is a key stone for the
maximum modulus estimate.

Lemma

Letl1<i<nandl<j<n-—1. Then

// |Li; (2!, @n, )| da’ dt < C, (8.7)
0o Jrn—1

where C' > 0 is independent of x,, > 0 and hence it follows that

/ / |Lin (2, 20, t) — Bin(z', 2p, t)|d2’dt < C, (8.8)
0 Jre-t

where C' > 0 is independent of z,, > 0.

Q4 /100 4




§8

Let g = (91,92, -+ ,9n) € L=(OR] x (0,T)) and (u, p) is represented by
(8.5). Then,

|ur — VS7(9n) — VTT(gn)|lL°°(R+><(07T)) < C||9||L<>o(aR1x(o,T)) (8.9)

for some C > 0. Furthermore, the normal component of the velocity u is
bounded and there is also a constant C' such that

max up(z,t)| < C max , ).
(w,t)ERix(07T)| n( )| = (y,t)EBRix(O,T) |g(y )|

To show the L' boundedness of L;j, we note that
Tn 2
Lij (-’L t) = 2%71-% / t_Eyne_ ‘yﬁ‘ / Dyj F/(y/a t)DyiE(xl - y/7 Ty — yn)dy/d:%
0 R?L*l
(8.10)

where IV is Gaussian kernel in R™.
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Lemma

For1 <j3<n-—1, weget

|z I

_n=1 _|a'|2 _n_ 1 — I
|f‘x/_y/|g%|x/|Dyjl"’(y’,t)DynE(:c’—y/,yn)dy’|SCt 2 e ¢ |2 |7 4+ Ct 2 2|2 |e

12
Jz|

Dy, T'(y/,t)Dy, E(z' — y'yn)dy| < Ct™ 33 |a/|e™ 7,

|f%\w’\Sly’ls2lw’l,lw’—y/lzé\w’\

712
| i piont Do T W Dy B’ = o yn)dy'| S Cla/ |77 [y o2 dy!

Vit
ly/| -2V Pay,

I<

N|=

| iy 122107 Py T @', ) Dy E(&' = ', yn)dy'| < Ct™2 [0,

!
T <I¥’I

4

(8.11)

where C' > 0 is independent of x’,y,, and t.
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proof. Using integration by parts, we get
/ Dy, T (4 ) D, E(@' — ', yn)dy/
|2 —y'|< 3 a’|

xT;— Y
- / D ) Dy, E(@' — o yn)o(dy’)  (8.12)
\x’—y’\:%|:c’| ]a; -y |

— / I'(y, t)DijynE(aj' — ' yn)dy .
|2/ —y'|<§a’|

o o/ |2
For ¢/ with |2/ — /| = 1|2'|, we get |T'(y/,t <Ct "7 e = and
Y Y 2
|DynE(x/ _ y/’ /yn)| S Cm Here, the first term of the rlght hand
/|2 +y2

side in (8.12) is dominated by

L ;o G B N e P
St -yi=per 06 OIDs, B = g sym)lo(dy’) - < O e el
B
t |aj

<Ct—"T e -1,

(8.13)
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Since [y
theorem, the second term of the right hand side of (8.12) satisfies

f\x/_ng%uq(rl(y/v t) —T'(a, t))DijmnE(x/ — ' yn)dy

72
=]

i1 Dy i De, E(x" =y, yn)dy’ = 0, using the Mean value

|:E —y'Pyn
! f\w’—y’\<llr’| (| —y' [2+2 )z+1dy (8.14)

= /
fR" /‘2_;'_1 dy :

< C’|:B’]t_nT_1_le_

<C|z

By (8.12) - (8.14), we obtain (8.11),.

For (8.11),, note that for ¢/ satisfying 3|2'| < [y/| < 2|2’| we have
_ 2 2

|2’ — /| > 3|2/|. We have \D Ty, 1) < Ct_u_l\x/]e_‘ = and

D, E(z' —y',yn) < C|2’'|” "2z, and thus we get

2
M

/ Dy, T'(y,)Dy, Bz’ —y ,yn)dy' < Ct 3 3[alje™ "7
|2 | <|y'|<2la’|, o' —y'| > £ ||

Hence, we obtain (8.11),.
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Since f|y,|§%|z,| D, T'(y',t)dy = 0, using Mean-value Theorem , (8.11), is
proved by

D, T'(y',t) (Dx E(x' —y,yn) — Dy E(w’,yn))dy’
i<l ! !
n n | /|2
§0(|l‘/|2+yn)_2/ t~ ;1|y’|26_dey,
ly'|<3 2’|

< O + yu)"3 /
ly'|<

Finally, (8.11), follows by

’2
/ Dij'(y’,t)DynE(a:’ — y/,yn)dy/ < Ct_% / |y/|—n+26— \ytl dy/
ly'|>2]z'|

2|’ |<|y’|
_n _ a2
=Ct 2 ly'| 2=V dy .
2‘1/‘ ’
TSW |

end of proof.
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Following a similar proof to Lemma 3.3, we get the following lemma.

Lemma

For1<i, j<n-—1, weget

’
|22

/ Dy, T'(y ,t)Dy, E(z' — o', yn)dy’ < Ct 3 2|a/|e”
o/ —y'|< g |2/|

/|2

Dy T'(y ,t)Dy, E(z' — o/, yn)dy’ < Ct 22|/ |e”

|z

b

/éw’Sly’ISQw'»Im’—y’IZ;%Ix/I

/|<1| |Dyjl"'(y',t)DyiE(ac' — ' yn)dy’ < C’|m'|_"/
y|<zl|z’

1 Ja’]
|y’|§C’§ﬁ

|y’|26_|y,|2dy’,

_ 1,12
oy W12

/ Dy, T'(y ,t)Dy, E(a’ — ¢/, yn)dy’ < Ct™% /
ly|>2]a| 1o/

<ly’|
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Proof of Lemma 8.2..
Note that for 1 <i<mand1<j<n-1

T T
/ / |Kij(x/,azn,t)|dx’dt§/ / |D., T(2', 20, t)|dx’ dt
O n 0 n
T
—|—/ / |Lij (2!, zn, t)|da' dt.
0 R"

2
Here, using change of variables (%2 = s), we get
=’ |2

2 -
fOT fR" |Dy, T(2!, xp, t)|da'dt = CfOTt_%xne_Tf . e da'dt

I%L ’
= Cxp, f(;f t3e fRn =12’ 4! di

3

= Czp, fg(%%)72x%s_26_sds.
(8.15)

Hence, to prove Lemma 8.2., it is sufficient to show
fOT fRn |Lij (@, @, t)|da'dt < oo for1<i<mn, 1<j<n-—1.
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By (8.2);, for 1 <i<mand1<j<n-—1, weget

fo Jan [ Lij(@ xn, t)|da’dt < C [ fRnf% |22 + 22 + t)"2da'dt
<O fF b2 4 ta=C.
(8.16)

To calculate f;; S | Lij (@', @y, t)|da’dt, we may assume 22 < T'. By the
representation (8.10), and Lemma 8.3. and Lemma 8.4., we have

fxT% fRn |Lij (@, xp, t)|d’ dt
|2'|2

n— |=')2 n
<C [ fpn Jo t 2 yne” (f%e*ﬂxw—l+t*r%|x'|e* t

—n o112 7|y’|2d / t—ﬂ , r|—n+2 f|y’|2d /)d
—Hl‘ ’ fly’\S%% ‘y ’ e Yy + 2 fL\%'SH/‘ ‘y ’ e Y Y
— T4+ II+III+1V,

(8.17)
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n—1

o "2,
toye tt T e v || tdynda'dt,
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Using change of variables twice, we have

212 Tn
= (LR e S | [y yne Vi dyndadt

T ,-2-1 &L -1 _n 277
=C [L 22t 2dt
and
22 Tn
I = f;% tm22 e 6_%|x|t NG yneYndy, dz’dt
T ,—n_o Hpf Zn\2 g
<C [zt 27 [gne” |t(22)>da’dt (8.19)

= C [ 227 2dt
=C.
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We divide II1 into two parts III = II1y + 1115, where

T Tn 3 v2

7L :/ / / tifynekac'\*n/
z2 J]z'|<vEJ0 ly'I<
ar Tn 3 vp

IIT, :/ / / t‘fyne‘Tlx’\‘"/
z2 J]z' >Vt J o ly'I<

Here,

12
w ly'IPe” v " dy' dy,da’dt,

(SIS
B

12
o Iy [2e 1Y " dy’ dy, da’ dt.

1
2

S

T _3 r—n |x/| n+1 n 7ﬁ ’
I1L < C’/ t 2/ lz' |7 (=) Yne  t dyndx’dt

a2 |2/ |<VE Vit 0

T

ZC/ mit_%_z/ |’ |d’ dt
@ o/ |<VE

2
T

< C/ 2t 2dt
z3

=C
T 3 . Ty _ﬁ ,
mggc/ t—z/ 1</| "/ yne™F dyda’dt
22 iz 0

T T
< C/ t‘%xi/ |2’| " da'dt < C/ t222dt = C.
a2 o/ |>VE 22
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Hence, we get

111 < C. (8.20)

Therefore, from (8.16)- (??), we prove

T
/ / Ly (&, m, 8)|da’dt < C (8.21)
O 7

for1<i<mnand1<j<n-—1, where C is independent of x,. With
(8.15), this implies (8.7).

By the second identity of (8.6) and (8.21), we prove (8.8) for the case

i # n, and by the first identity of (8.6) and (8.21), we prove (8.8) for the
case i = n. This ends the proof of Lemma 3.1.

O
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Proof of Theorem 3.2.
We begin the proof of Theorem 3.2 by the representation (8.5) of u such
that

J‘. t Z/ Kl] ylvx’"dt - S)gJ (y/a S)d’y/dS,
Rn

n—1

=> / Kij(a' =y n, t = 8)g; (Y, 5)dy'ds
R

i
+ / / Kzn(:cl - y/a Tn, t— 5)9”(:’/7 S)dy/ds
0 R™

and the last potential for g, is written as
t
/ / Kzn (El - y,7 T, t— S)g"(ylv S)dy/ds
0 R™

¢
= — 20in Dy, T2 — 1y, xn, t — 8)gn(y’, s)dy'ds

R™
t
+ 4/ / LG (xl - yly T,y t— s)gn(yl7 S)dy/ds

am/ - B~y 2n)gn(y', s)dy'ds.
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Since L;,, = L,; + Bj,, we have
t
/ / Lin(z' — o on,t — 8)gn(y/, s)dy'ds
0 n
t
:/ / Lpi(z' — oy op, t — 8)gn(y/, s)dy'ds
0 n

o t
+ 81, / / K/(.T/ - y/7 Ly = S)Qn(y/, S)dy/ds
1 J0O n

for 1 <i<n—1, where we defined the composite kernel function (z,t)
on R x (0,7) by

k(z,t) = / aif(:c' — 2 zn,t)E(Z,0)d7.
Rn—1 le'n
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Define the surface potential T(g,,) by

t
T(gn) (2, 1) = 4 / / Al =gl ti— Nl (B
0 JRn-1

Moreover, we have that

0

0

8l‘i

E(@ =y, xn)gn(y', s)dy =

Therefore we conclude that the tangential part, which is associated with
L;j, satisfies

ur(2,t) = VS7(gn)(2,t) = VT1(9n) (@, )| < Cllgll Lo (mr-1x(0,1))

for all (z,t) € R} x (0,T).
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The normal velocity u,, behaves even better. First, we know that %S(gn)
is the Poisson kernel expression of the solution for the Laplace equation in
the half space and satisfies the maximum principle. In the case i = n, we
have a relation from (8.6)

Lyn=- Y  Lyi-2D,T

1<i<n—1

which has a bounded L! norm on the lateral surface. This conclude the
maximum modulus estimate of wu,,.

0
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§8.4 Maximum Modulus Estimate in C? Domain.

We denote the Green's matrix for the domain Q by (G**,6?) and for a given
point z € ) we let T € 0N} satisfy |x — | = dist(x,0). The interior L>
bound estimate can be shown by the layer potential method in [?] and we
consider separately the case that the generic point x is close enough to 0.
Indeed, to see the interior boundedness, we need to show the boundedness
of the double layer potential in L>(0,T; L?(05)). Since the boundary data
is bounded, we can represent the solution by the double layer potential in [?]
from L? theory such that

weo = [ [ - nt- o) (@2

Yi — T

| XTI p ) N@y)d

| E ) - Noty)

=(Kh);(x,t)

and . )
g=—5h+Kh=(-3T+K)h (8.24)

in the sense of L?(0Q x (0,T)) for an h € L2(092 x (0,T))(see Theorem

2.3.6 and Theorem 5.1.2 in [?]).
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Furthermore —3I + K is invertible on LZ(9Q x (0,T’)), where the subscript
o means solenoidal. From the representation, we have a continuity lemma in
time of the density function & in (8.23).

Lemma

The inverse of the double layer potential —%I + K is bounded in time as an
operator of L?(0)) and there is a constant § > 0 such that if |t; — t3| <,

1R (- t2)l|z200) < Cllg(,t1) — g(,t2)llz2(a0) + CllAll Lo 0,1;22(0))-

By an iteration there is C' such that

1 _
1(=5T+K) " gllzeo.riz2@) < Cllglleo.rir2@)-
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proof. We assume the boundary data g € L®(0,T; L?(09)) and after
arranging the singular integrals in the double layer potential expression we

have
Gi(,t2) =i, 1) = —5 (ki t2) — Bt — 1)

— [ (b ) — Ay, 12) - N)do(y)
90 wn|y $|

+/ U OByt — sy, o)
x — 1y, to — 8)h;(y, s)do(y)ds
t Joa ON(y) i i Y

/1/3Q (8NU x_y’t2 ) a?\]}zy)(m_yvtl_s)> hj(y,é
:(—51 +H)(h(-,t2) — h(-,t1)) + E1h + Eoh

for almost all 0 < ty < t9 < T and x € 01).
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We claim —iI+H : L2(9Q) — L*(09) is invertible and
1 _
I(=51+H) Yellr200) < Cllellr20)

for a constant C. First of all, if we set e = (—3I + H) f and consider the
normal components, then we have

1
eEN = (—§I—|—N-H)fN,

where N - H is the standard double layer potential operator of Laplace
equation and —%I + N - H is invertible. So given vector valued function
e € L2(09), there is a scalar valued function w € L?(f2) satisfying

1
eN = (—§I+N-H)w

with [[w|[z2(50) < Cllel[12(a0)- Here w is the normal component of f and
the tangential component v of f is obtained by
v=—-2(e—eyN)—2(Hw— (N -H)wN).
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Therefore we get
f=v+wN
and f satisfies
1 fllz200) < Cllellz2a0)-

It remains the estimate E;h and Esh. Since Q is C2 domain, in the case of
Gaussian kernel, there is C' such that for all (z,y,t) € 02 x 992 x (0,T")

o —y® _lmu?
7 +2
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Therefore we get from Minkowski inequality and Young's convolution

inequality
t2 ar 2 1
</aQ /t /aQ ON(y) (z —y,ta — s)h(y, s)do(y)ds da(z))

2 A
" | o= g2 _ joa?
<C / — / e 2@=9 |h(y, s)|do(y)ds| do(z)
(aﬂ t Vi2—5s =5t Joq t2—s

t
<c / 7 / — / ool - 525 (g, )1 do ()
n V= \Joa|h—s"" Joa t2—s

2
da(a:))
<c/ ﬁ||h< )| L2y ds

< CVtg =t || oo by 152 (02))

By the same token, assuming ||h|| Lo (0,4,;22(q)) is bounded, we have that

|E2h (-, t1)l|z200) < ClIPlLoo(0,t1522(02))-

end of proof.
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We let the generic point x be away from the boundary, say
dist(xz,09) = ro > 0. Since the kernel of the double layer is bounded by
n—_cg for each € > 0 and the density function h of g for the double layer

potentlal is bounded in L>°(0,T; L%(95)), the interior L> estimate follows.

Suppose the boundary data g € L>(0,T; L?(09)). If dist(xz,0Q) > rg > 0,
e>0andt <T, then there is C such that

C
lu(z,t)] < WHQHLN(O,T;BWQ))-
0

Now we start the boundary estimate. Since Stokes equations is translation
and rotation invariant, we assume that £ =0 and z = (0, z,,), =, > 0. If z
is close enough to 01, there is a ball B,.(0) centered at origin and C?
function ® : R"~! — R such that QN B,(0) = {z,, > ®(z')} N B,.(0).
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Furthermore, ® satisfies that

[2(z")| < Cla']?,  [V'e(z)| < Cle'], [V'V'@(2)| < C

for 2/ € B..(0) and the outward unit normal vector N (z/, ®(z')) at

(', ®(2")) € 992N B,(0) is

N, 8(')) = L (V'®(z'), -1).

VIt V()2

We define a transform y: 2N B,.(0) — R’} such that

w(y) = pw(y's yn) = (' yn — 2(y'))

(8.25)

and note that (v, yn) = (', yn + ®(y)). Since our generic point z is
(0,x,), we have p(z) = x. Hence the Green's matrix G on the half space

can be transformed to a function uG on §2 such that

pG(z,y,t) = G(u(x), w(y), t) = G’ 2n — ('), ¥, yn — @(¥), 1)

and satisfies the zero boundary condition

pG(z,y', @(y'),t) = 0.
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Moreover, the transformed Green's matrix (uG, uf) satisfies a perturbed
Stokes equations in 2 x (0,7)

0 0

= a5 = /A ij 75— i

ot (nG) 5 y(.UG) j T 8yj (uo)

= 0;j0(x — y)o(t) + Dy, (uG)i;A'® + 2Dy, Dy, (uG)i; Dy, @
— Dy, Dy, (MG)iijkq)Dykq) — Dy, (Ne)iDyj(I)

= 6;56(x — y)o(¢t) + R(x,y,t)
and the solenoidal condition

Dy, (1G)ij = — Dy, (uG)i; Dy, ® = Si(z,y,1).
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Therefore, if we let the perturbation (J,1) = (G — uG, 6 — u), then
(J,n) satisfies the perturbation equations:

0 0

Dijij(x7y7t) = Si(wvyat)7 (827)
where R is

Rij = — Dy, (pG)ijAy® — 2Dy, Dy, (4G)ij Dy, ©
+ Dy, Dy, (1G)ij Dy, @Dy, ® + Dy, (10)i Dy, ®
=I+IIT+1IT+1V.
We have already discussed the boundedness of velocity u in the interior by

double layer potential in L? theory, we begin to prove the boundedness near
the boundary.
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The plan to get L' bound of the perturbation .J of Poisson kernel on

00 x (0,T) relies on the LP(0,T; W?%P(£2)) estimate and the trace theorem
for it. Recall that the Poisson kernel is a derivative of Green's matrix and
that is the reason that we need LP(0,T; W?P(£))) Sobolev type estimate.
Therefore, we need to estimate the LP norm of R in (8.26),

LP(0,T; W1P(Q)) norm of S and LP(0,T; W~1?(Q)) norm of S; in
(B1NQ) x (0,T) in (8.27), where W—1P(Q) is the dual space of W'P(Q).
Since the Green's matrix (G is associated with the Gaussian kernel and the
composite kernel H, we estimate their derivatives first. We have

C ly—a| _WPym=en®

N

C ly*—=| _wityaten?
t

t

ly — z|? _w'P+un-enl®
€] 2t

—z|? ' +Hynten?
(& 2t .
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Since | D, ®(y")| < Cly'|, |A’®(y')| < C and 2’ = 0, we get

‘ < Lw — ZC‘ 7W
IRV AR
€ LP((2N B;) x (0,T))
C ly—af _WPtiym=eu?
\/I—fn+1 \/,ES e 2t
€ LP((2N By) x (0,T))

| Dy, (@ — y, t) A'0(y)

| Dy, Dy, T'(x =y, t)V'O(y)| <

n+2

as a function of y for all p € [1, =5

). In the same way, we have
DynF(ZIJ—y*,t)A/(I)(y/), DykDynF(w_y7t)V,<I)(y,) € Lp((QmBT)X(OaT))

- 2
as a function of y for all p € [1, 22%).
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Applying (8.2), we have

C
|DynDz]/ / E(x — 2)[(z —y*, t)dz| < <
Rn—l 13 (|2 = /|2 + lyn + znl? +£) 3"
C
Dy, Dy, Dy, / / E(x — 2)['(z —y*,t)dz| < .
[Py I Rn—1 | %(Ir’—y|2+|yn+mn|2 +t)2(n+1)
Hence, we have for p € [1, Z—ﬁ)
DynD%/ / ) E(x — 2)['(z — y*,t)dzA' @(y)|
R"'L
C 1

S \/zn-‘rl (| Iy*;z|2 P l)n € Lp((ﬂﬂ BT) X (OvT))

D,,D,,D., / | DuBe =206 -y, V"0 )|
R— 1
C 1

Vit (==l 4 1)n S EP0 ) X (U )

<
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Although there is a transformation 1 of domain, these estimates imply that
I, II and III are in LP((2N B,) x (0,T)) as a function of y for all
2
pc [17 211) _
It remains to get LP estimate of the pressure kernel 8. For each fixed time ¢,

we have

1 1=y Pre
v SCy’H/Rn_lDME o = o) e R gy
1 1 12" —y/12+y2
C 4 D D _Td / .
+ |y| Yn~"Yn /l;nl \/mn—Q \/{ﬂe %
n

(8.28)

The first term on the right is L? for p € [1, Z—ﬁ) by the Young's convolution

inequality since the kernel —%»— has bounded L'(R"~!) estimate as a
e S
function of 2’ independent of z,,. For the second term, we recall the

following proposition by Solonnikov (Proposition 2.3 in [2]):
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Lemma

Let M(x, t) be a function defined for x € R’} andt > 0 and having the
properties
M(A\z, \2t) = XM (z,t), A >0,
—k—2s 2
IDED; M (2, )| < Ct™5 " exp (-%) .

Then the integral
et = [ B@ME ~.ant)df
satisfies the conditions
JOAL, Ay, A2t) = AT (2, Y, 1),
IDEDY, D@,y )] < CEZ5 (24 b2+ ) ef
where k = (k1,....,k,) and |[K'| = k1 + - -+ kn—1.
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So, we find the second term of (8.28) without the transformation y is
bounded by

‘y/‘ < y/ 2 xn+y7L 2 >_g 1 Yn
C=—=||==%=|"+ +1 —=C
v TR Vi
-1
r ’y/|(y/2 Tn + Yn\o > 21 v
SCO(—=+1)=F%= | |=]"+ + —m€ 2%
which is in LP((2N B,) x (0,T)) for p € (1, 243).

This concludes that IV is in LP and R in (8.26) is in LP for all p € (1
after adjustment of the domain transformation .

n+2
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To get LP(0,T; W'P(Q N B,.)) bound of S in (8.27) we follow a similar
program to R. Indeed, we have

VyS =—=VyDy, (MG)iijj(I)(y/) — Dy, (HG)ijvyDyj(I)(y/)-
The terms in the right hand side have already been considered in the
estimates of I, I1 and II1I of R except D, D, (uG)i; D, ®(y'). But,
Dy, Dy, (1G)ij = > 1< j<n—1 Dy Dy, (1Gij) and hence
Dy, Dy, (1G)i; Dy, ®(y') has the form of I1. Therefore, we get

1]l oo, wrp(@nB,y) < C  independent of .

It remains to find LP(0,T; W~1P(Q2 N B,.)) estimate of D;S. Since S is
defined as

Si(@,y,t) = =Dy, (4G)ij Dy, (y')
and @ is independent of v, LP(0,T; W~1P(Q N B,)) norm of S; is
bounded by

T
c / / IDL(uG) VB () Pyt
0 QNB,

for a constant C.
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By disregarding @, we have

Dth — 52] (Dt (.T - yu ‘/Ij - y*7t))

4(1 — 6jn) Dy, / /R" ) E(z — 2)DJI'(z — y*, t)dz

and

1 |z —y?\ _le—u? 1 |l —y*2\ _le-

|D:Gi;| < C o — e 2z +C —— - e
J \/’ +2 \/27: +4 \/27: +2 \/27: +4

—i—C’ xj/ /Rn 1 E(z — z)DiI'(z — y*, t)dz

and Proposition 2.5 in [2], we have

‘ x]/ /Rnl E(z — 2)DiT(z — y*, t)dzV'®(y)| <

This implies that D;G;;V'®(y') € LP((2N B;) x (0,T)) for all p € [1, Z—ﬁ)
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§8.1 §8.2 §8.3 §8.4

Since the estimates of R and S hold only in a small ball near boundary, we
need a localization. For the localization, we take a cut off function ¢ such
that ¢ =1 in B, and ¢ = 0 in the complement of By, and we consider
(¢J, ¢n) as a solution to the inhomogeneous Stokes equations. We delete
the generic point x in the various expressions. Therefore by Theorem 3.1 in
[2], we obtain the following lemma for the perturbation (J, 7).

Lemma

There is a constant C' depending on r and €} such that
11| e o, rsw 20 @B,y + 0l e, 0w 1p (@B
< C(A+ |G| oo wio@n(Ba\Bo)) + 10 Len(B)

for all p € (1, Z—ﬁ)

By the trace theorem in W1P(2 N B,), the following lemma also holds.
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Lemma
There is a constant C depending on r,$) such that

IVJ]]

< C(L+1G® oo mswrr@nBan\B) + 162 o@n(Ba\ B x (0.17)

+
|+l

1 1
Lp(0,T;W' ™ »°P(0QNB, Lp(0,T;W' ™ 5P (00NB,)

n+2
for all p € (1, 2£9).

The generic point z is in B, and hence the Green's matrix (G}, 6%?) has no
singularity in the complement of B, as a function of (y,t). Therefore we
have that for all p € [1, 0]

G| Lo o 710 (Bar\ Bo)) F 1021 o (@(Ba\ B x (0,7)) < C

for a constant C' depending only on p,r and 2.
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Now we prove our main theorem. The Poisson kernel K(x, y,t) satisfies

K%w.50) = s G )02, ONG), forall  (o,,t) € O

We have that
GY=uG+J, 0% =pub+n

and from Lemma 4.3 we know that V.J and n have bounded
L'((0Q2N B,) x (0,T)) norms independent of z since

Lr(0,T; Wl_%’p(ﬁﬁ N B,)) for p € (1, Zﬁ) is embedded in

LY((02N B,) x (0,T)). So we need to consider only 8N( v MG (@, y,t) and
pd(z,y,t). The L1((022N B,) x (0,T)) bound of uf(x,y,t) as a function
of 3/ for the generic point z = (O,xn) can be obtained by Lemma 4.1 after
considering coordinate transform p.
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From the definition of the transformation of i and the local representation
of the boundary 92, we have that for y = (v, yn) = (v, (') € 02N B,

1
GZU, ,t = VI/G Z, /, n_q) /,t 'VII(I) d
NG (z,9,t) e (.9, y (¥),t) - Vi @(y')

1 O gt
‘/'U )
1 + V()2 G oo

V//G(x y 0 t) V;/(I)(y/)

—®(y),t)

T \v'cmy E
1
9 Ga,y/,0,1).

1+ V)2 On
Furthermore, we have already proved that the L;((92N B;) x (0,T")) norm
estimate of the first term

[ fov

for some C' independent of z since |V'®(y/)| < c|y/|.

/G(x,y,0,t) - Vi, ®(y')| dy/dt < C

Vi+IVew)P? !V“I’( Vi+IVew)P? Vi
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By the expression of Poisson kernel K we have
7%627'(:37?/7 07t) = Kij (iL'/ - ylvxnvt) + 6]'"77i(x/ - ylvovt)
= _25ijDr£n F(T/ - yl7 Tny t) e 4(L1] ('T/ - ylz Tn, t) - 5J7LBZW ('T/ - y/7 Tn, t))
+ 48jnBin(z' =y, Tnyt) — 6jn0(t) Do, E(x’ — v, zn)
We know already that
—20;; D, Tz — ', xn,t) +4(Lij(2' — ¥, 2, t) — 05 Bin(2' — ¢, 2y, 1)) has
L' bounded norm as a function of (y/,t). Therefore in the solution
expression for of u we can write

t
/ / 5jn5(t - S)DmLE(x/ - y/7 xn)gj(y7 S)dO'y
0 JoQNB;,
0

= E(@ —v t)d
81]7; /8QOB7, (x yaxn)gn(ya ) Uy

and .
4/ / 5]nan(x, B y,7 Tp,t — S)g](yv S)dgy
0 JoONB,
0
= ——T(gn)(z,1).
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If we denote ¢e,, = (0, 1) which is the coordinate vector for y,,, we have that
the component of boundary data g, is

gn=9-N(y)+g-(en,—N(y)) for yeoQn B,

where g = (g1, 92, - -, gn) is the boundary data and hence we have
Va E(x' =y, n)gn(y, t)doy = V:S(g- NXNPr)
o0QN By
+Ve (BE@' =y an) — E(@ =y, 20— 2()))g(y, 1) - (
oQNB;.
+Vy E(zl - y,a xn)g(% t) : (en - N(y))daya
oQNB;,.

where S is the single layer potential operator and X is the characteristic
function. Since 2/ = 0 and ®(y/) < Cly'|?,

[ ValBE ) = B~ ofsn = 0()))| do, < C.
oQNB,.
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Then, by observing that

len — N(y)| < Cly|

we find that V. E(2' — 9/, x,) - (en — N(y)) has bounded L' norm as a
function of ¢ and we have that

sup
zEQNB,.

V. / E(@ — o, 20)9(0,1) - (en — N(@))doy| < Cllglli oax0.1)-
o0NB,

Similarly we find that V(2' — ¢/, 2, t)(e, — N(y)) has a bounded L*
norm as a function of (y/,¢) and we have that

/ / — o tnt — 5)g (1, 5) - (en — N(y))doyds
8QOBT

< Cllgllze=a0x(0,1))-

sup
(z,t)eQNB- % (0,T")
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With the interior L*° estimate, localization with the small balls B, and the
preceding kernel estimates of L! bound, we prove our main Theorem 1.1.
For Corollary 1.2, we observe that

1
IV.S(g - NX%NEn)| §C/Q i WIQ(@/@(?J’)J)-N(y’,<1>(y’)|dy’,
NB;
where x = (0, z,,). Similarly, we also have
90NB r 1
|V, T(g-NX2¥B)| < ¢ /0 /Q | ol 80 )N . 0 dy e
NBy

The boundedness follows from the Dini-continuity of g - N.
O
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89. Helmholtz decomposition.

In this section we are interested in establishment of Helmholtz-Wieil
decomposition in LP for Lipschitz domain. In what follows, we shall make
no notational distinction between scalar valued and vector valued function
with components in LP()). We define the Besov space B%(99) as the
collection of all measurable function f on OS2 such that

W llszony = WAlzsom + ([ [ Y=L doprin@)”

The case p = oo corresponds to the non-homogeneous version of the space
of Holder continuous functions on 9. We also define B”  (9f2) as the dual
of BE(09) satisfying }D + % =1,0<s<1,1<p<oo. Define LI{(R™) be
the Sobolev space and LI(2) be the restriction of L{(R™) on Q.
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Suppose that w € LP(2) and divu € L (Q2). Then u- N € B, (09Q).

p p

Proof
(1)

We commence by noting that the pairing of L‘iHl(Q) and L371+1 (Q) is

1 1
well defined for any 0 < s < 1,1 < p,q < 0o with %4—%:1.

(2)
In fact, since Cgy,,,,,(Q) is dense in LE(Q) for 0 < o < %, it is not difficult

to see that LY () = L&(Q) for 0 < a < %.

(3)
In particular,
* . 1
(@) = (Lng(Q)) f—s+220
q p
and
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(4)

For any extension

re(m,@) -1, @

—s—%,O

of these distribution div F € (C%,,,(2))’, we denote by F - Ny the normal

comp

component of F' and define it are the linear function in BL _(9Q) by
< F-Nj,¢p>=<f¢>+<F V>

for all ¢ € BE(9R), where ¢ € L§+A(Q) is an extension of ¢ in the trace
sense.

p
6 -
In particular, when S = ;. ¢ € LY ().
(6) _
It remains to show that V¢ € L‘is+l. But this follows from extension

lemma by Je-Ke and duality lemma [t])y FMM.
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Remark 1
From the proof, we can deduce

- Nllgr | o0y < e(€,p) (IlullLe(e) + lldivullzeg)) -
p

Remark 2 .
If u € LP(Q) has divu = 0, then u - N as a functional in (Bf_d&ﬁ)) ,
q

annihilates all functions of the form ysq: with €’ connected component of
Q. We denote the collection of all such functionals by 5” , (9€2). We

1
. p
introduce

LY o) == {u € LP(Q) : divu=0and u- N = 0}

grad LY () :={Vu:u e LY(Q)}.

They are easily seen to be closed subspaces of LP(2) and , for p = 2, we
denote P, D the corresponding orthogonal projections from L?(£2) onto
ng,o(Q) and grad L3(12) respectively.
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Theorem

For each Lipschitz domain €2 in R™, with arbitrary topology, there exists a
positive number € depending on §2 such that P, D extend to bounded
operators from LP(Q) onto L. () and onto grad L} (), respectively, for

each % — € < p < 3+ €. Hence in this range
IP(Q) = gradL5(2) & L, ()

where the sum is topological. In the class of Lipschitz domain the result is
sharp. If however 9Q € C! then we may take 1 < p < oco.

To prove our theorem, we need a lemma.
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Lemma

For © bounded Lipschitz domain, there exists a positive number ¢ = ¢(2)
with the following significance. If % — € < p < 3+¢, then for any

fe L{LO(Q) and any g € Bfl/p((')(l) satisfy the compatibility condition
< f,1 >=<g,1 >, the Neumann prblem

Au=f in Q
g—]\‘,:g on 0N

ue LY(Q)

has a unique (modulo additive constants) solution u. Recall the Neumann
boundary condition is interpreted in the sense that

/ Vu(z) -Vo(z)de =—< f,¢ >+ < g,Tr¢o >
Q

for any ¢ € L1(2). Moreover, Vu satisfies the estimate

[|Vullpao) < (2, p) (||f||L3110(Q) + ||9||B’;(asz))
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Proof of Theorem

(1)

We let 7 stands for the Newtonian potential which acts componentwise on
vector fields.

@

We define P : LP(Q) — L. () < LP() by setting

Pu = u — Vdiv(mo(u)) — Vi, for all u € LP(2) where 1 is the unique
solution to the Neumann boundary value problem

AYp=0 in Q
a! 2% =[u—V(divrg(u))] N € B, (89)
¥ € LE(Q). '

(3) _ N
By assumption, P is well defined, linear and bounded and moreover I — P
maps LP(Q2) boundedly into gradL’ ().
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(4)

Next we claim that P is onto L. 0(£2). We need only to show that
P|LP
(5)
If u e L, () and if ¢ solve (M), then the function ¢ + divmg(u) is
harmonic, belongs to L{(£2) and has vanishing normal derivative.

(6)

Invoking uniqueness for the Neumann problem, it follows that

Py = u— Vdiv(rq(u)) — Vi) = u.

(7) _

The fact that on L*(Q) N LP(Q2) the operator P acts as the orthogonal
projection onto L?zw,o(m is easily seen. Thus P extends to a bounded
mapping of LP(§2) onto L. (€2) as desired. From this the statement about
D = I — P follows as well.

(8)

Finally, the range p € (3 — €, 3 + €) with €, ensures the solvability of (#).

@ = = I, the identity map on deo(Q)

div,0
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Remark

It is clear that for any 1 < p < oo, the LP-helmholtz decomposition holds if
and only if the projection P extends to a bounded operator on LP()). Since
P is L? self-adjoint, the latter condition is also equivalent to P being
extendible to a bounded operator on L4(£2) for % + % = 1. In particular, the
L4-Helmholtz decomposition is valid if and only if the LP -Helmholtz
decomposition is valid. In a similar manner we may consider a new function
class LY. () := {u € LP(Q) : divu = 0}.

Theroem
Let €2 be a bounded Lipschitz domain in R™, with arbitrary topology. Then
there exists € = ¢(Q) > 0 such that LP(Q) = gradL] , @ LY, () for each
% — € < p < 3+ €, where the direct sum is topological. Once again, in the
class of Lipschitz domain, the result is sharp. If however, 9Q € C!, then we

may take 1 < p < o0.
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Proof
(1)
Here the departure point is to consider the operator

LP(Q) 5 u — V(divra(u) — ) € gradLf ;(Q),

where ) is the unique solution to the Dirichlet problem

A =0
a4 ! Ty =Tr(divrg(u)) € Bllll((?fl)
¥ € Ly(Q). ,,

The solvability of (&) is known and the remaining proof is the same as the
proof of previous theorem.

counter Examples

Now we want to show the optimality of p.
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Lemma
For any bounded Lipschitz domain 2 in R™ and 1 < ¢ < oo and any
& € B, (0%), there exists a vector field U € L4(£2) such that

q

divU € LY(Q),U - N = ¢

and

l|divU]|| ey + U]l Le(o) < C(QQ)HfHB&(@Q)-
q

For any p ¢ [%, 3], there exists a bounded Lipschitz domain € in R®
for which the LP-Helmholtz decomposition fails.
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Proof

(1)

First we claim that for any bounded Lipschitz domain 2 and any 1 < p < 2,
the validity of LP-Helmholtz decomposition implies the solvability of the
boundary value problem

ue LY(Q)
V) Au:g—ﬁ<g71>

%:0, Jou=0

for any g € LgLO(Q). To see this, we fix an arbitrary g and set
99— (g <9,1>).

(2)

We know that mqo(g') € LY ().

(3)

Since, by assumption, the LP-Helmholtz decomposition holds, we can find
unique ¢ € LY(Q) and w € L, () with norms controlled in terms of the
LP(€2) norm of U and such that

U—Vﬂ'g(diUU) =Vo¢ + w. 149 /159



(5)

(Co)nsider now f : +% € LP(9Q) and observe that [, fdo = 0.

6

Since 1 < p < 2 there exists a unique harmonic function v in  so that
g—g = f and such that the nontangential maximal function of Vv lies in
LP(09).

(7)

In particular, h:=7q(g') — ¢ — v € LY(2) and we see easily that
wi=nh— ﬁ Jo e solves (V).

(8)

Estimates and uniqueness follows from the previous uniqueness result and
this complete the claim.

(9) .

Let now T : (L3(Q))" = LQ_LO(Q) — L2(Q) be the solution operator of
(), mapping from g to u. Clearly this is well defined linear and bounded.
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(10)
Moreover, by Green's formula, 1" also satisfies

<9, Tgo >=< g2,Tg1 >, 9192 € L2_1 ().
(11)

From what we have proved so for, the solvability of the boundary problem
(V) for some p € (1,2] implies that T" above extends to a bounded operator
from L¥ | ((Q) into LF(Q). Given (10), we can further conclude that under
the same hypothesis, T" also extends as a bounded mapping of qul’O(Q)
into LY(£2), where ¢ > 2 is the conjugate exponent of p.

(12)

However, given ¢ > 3, there is a bounded(cone like) Lipschitz domain 2 in
R™ and a function u € L? such that

ou

=0 but wué¢Li

(13)
In the light of our disscussion, this implies the failure of LP-Helmholtz

decomposition for 1 < p < % on such domains.
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