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Introduction = Problem of CALR

@ The dielectric problem: for a given compactly supported function

f7 fR2fdx:07
V-eVVs=f in R?,

with decay condition Vs(z) — 0 as |z| — 0.

@ The distribution of the dielectric constant (permittivity) es is given

by
1 in R%2\Q,
=4 —1+1i0 in Q\D,
1 in D

for a loss parameter § > 0.
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Introduction = Problem of CALR

o In quasistatic regime, the time averaged electromagnetic power
produced by the source dissipated into heat approximately

E;s ::%/ eg\VV(;\Qda;:/ §|VVs|?dx
R2 Q\D

Problem of the cloaking by anomalous localized resonance (CALR):
o Characterizing the source f such that the following two conditions
are satisfied:

limEs =00 as 6§ —0, (1)
0—0
and
|Vs(z)//Es| -0 as 0 —0 when |z|>rg. (2)

Daewon Chung (Inha Univ.) Feb. 12. 2014



Introduction = Problem of CALR

Cloaking by anomalous localized resonance:

e (1) implies that an infinite amount of energy dissipated per unit
time in the limit 6 — 0

e Scaling the solution Vz by 1/4/FEjs, the energy dissipation becomes
constant (independent of §)

e (2) says that the scaled solution approaches zero as 6 — 0, so the
effect of the source becomes negligible. (the source is essentially
invisible)

e weak CARL: limits in (1, 2) are replaced by limsup.
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Introduction Results and Motivations

The recent results and motivations

@ The anomalous localized resonance was first discovered by
Nicorovici, McPhedran, and Milton (Optical and dielectric
properties of partially resonant composites, PRB, 1994)

e ALR is related invisibility cloaking, Milton and Nocorovici (On the
cloaking effects associated with anomalous localized resonance,
PRSA, 2006)

e The condition (1) results the solution Vj oscillates very rapidly as
0 tends to zero.

- Numerical simulations]NMM, MN] shows that the oscillation takes
places near the interfaces 9Q and 9D .

e In [MN], if the core and the shell are concentric disks of radii r;
and re, and f is a polarizable dipole located at y
(f(x) =a-Vé(x —y)), then there is a critical radius

such that for y outside r,.
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Introduction Results and Motivations

o In the recent paper of Ammari, Ciraolo, Kang, Lee, and Milton
(Spectral theory of a Neumann-Poincaré-type operator and
analysis of cloaking due to anomalous localized resonance, ARMA,
2013), a general method to analyze CALR has been developed

- The condition (1) can characterized in terms of the spectrum of the
Neumann-Poincaré type operator associated with the double
interface dielectric equation.

- Using spectral characterization, for concentric disks, it has been
shown that CALR does not occur for any source f supported
outside r, = \/13/r;.

- Furthermore, if the Newtonian potential of f satisfies an additional
mild condition on its Fourier coefficients, then CALR take place.
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Introduction Results and Mot

@ These results were extended in (Kohn, Lu, Schweizer and
Weinstein, A variational perspective on cloaking by anomalous
localized resonance, preprint) to the case when the core is not
radial by using variational approach with assumption f is
supported on circles.

o The circular structure seems the only known coated structure where
CALR occurs, and it it of interest to find such a structure other
than CALR takes place.
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Neumann-Poincaré operator

o The single layer potential on a function ¢ € L?(T') is defined by

Selel(@) = 5 [ nle = sloda(t), =< B2,

@ The Neumann-Poincaré operator on I' is defined by

1/Ww—%4@>

Kilel) =5 [ 00

o(y)do(y), xeTl.

@ The solution Vj to the dielectric problem involves two interfaces:
I'; := 0D and I', := 02 can be represented as

Vs(x) = F(x) + Sr,[pi](z) + Sr,[pe)(x) = € R?,

for a pair of potentials (;, pe) € Ho(= L3(I';) x L3(Te)), where F
is the Newtonian potential of the source term f.
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Neumann-Poincaré operator

e From the continuity of the flux along interfaces, (¢;, @) satisfies

(25 + K*) [%] = [_ggp] :

€ Ove
where
) —Kx: =280
- d Kf = r; ov; Cle
T o0 ) M 28, Ky,

This operator K* : H — H(= L*(I';) x L?(T,)) is the
Neumann-Poincaré-type operator associated with interfaces
problem with two interface I'; and I'..

@ Defining the operator S : H — H by

@ —S is positive-definite on Hy.
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Spectral characterization of CALR

o K* is self-adjoint and compact assuming that I'; and I, are Ch®
for some o > 0 on Hy with inner product

<30’1/}>S:_<30¢SW}]>’ v, € Ho.

e Suppose kerK* = {0} and let A1, A2, (|A1] > |Aa| > ---) be the
nonzero eigenvalues of K* and ¥,, be the corresponding normalized
eigenfunctions. Then

©;i (9, Vn)s
—N LBy,
|:906:| Zn: An + 25

o The spectral characterization [ACKLM]:
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Spectrum of the NP operator on confocal ell

A geometric structure of the CALR in the confocal ellipses:

e 65:1 ‘\\p*

Foci
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Spectrum of the NP operator on confocal ellipses

e The elliptic coordinates (p,w) for x = (x1,x2) are defined by
21 = Rcoswcoshp, x93 = Rsinwsinhp, p>0, 0<Q <27,

In this coordinate, E = {(p,w) : p = po} is an ellipse whose foci are
(£R,0). The length element and the normal derivative on E are
given by

do = Z2dw and g:E

where Z = Z(po,w) = Ry/sinh? py + sin w .
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Spectrum of the NP operator on confocal ellipses

o Let F={(p,w) : p=po}, for a harmonic polynomial given by
h(z) = cosnw(e™ + e~ "),

— H(em + e7) cos nw p<p
B - _ ) (an—3)(e ; < po
SplVh-v)(@) { Bne” " cosnw, P> po,
where ) )
—e2np0 4 p—2np0
Ay = m and /Bn = 9
Similarly, h(x) = sinnw(e™ — e~ "),
_ [ (ran =) —e ) sinnw,  p < po
Sp[Vh-v|(@) = { Bre” ™ sinnw , P> po-
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trum of the NP

e From the jump formula of the single layer potential:

KeE™ cosnw] = a, 271
Ksle™

COS nw

sinnw] = —a, 2 sinnw .

Lemma

ap and —a, are eigenvalues of the NP operator K, on the ellipse

E ={(p,w): p=po} and corresponding eigenfunctions are
Z(po,w) L cosnw and Z(pg,w) ! sinnw.
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Spectrum of the NP operator on confocal ellips

Assuming 0D and 99 are confocal ellipses with common foci (£R,0).

0D =T;={(p,w) : p=pi} and =T, ={(p,w) : p=pe}-.

For k£ = 1, e and nonnegative integers n,

6% (w) = Z(prw) " cosnew, G (w) = Spp,w) L sinnw

o for k=1,e,

eP + e P
——————— cos nw, p < pr,
Sry 03] (x) = Jnenor
Lk Pn - e"Pk 4+ e "Pk
—W COS nw, P > Pk
enr —e P
~“EC  sinnw,  p< g,
sk _ NPk ’
Sl ={ e,
—W s nw, P > Pk
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Spectrum of the NP operator on confocal ellipses

Also, we have

0 ce] __
8V2‘ SFe [¢n ] -
0 ci]
8Ve SFi [¢n ] -

0

~—Sr.[¢5] = —

0 v;
0

87,/651“1- [on] =

enpi — 6_npi

X <
2enpe e
np; —np;
e t+e ' ce
2eMPe no
np; —np; .
e t+e b osi
2enpe "
enpi — e*nPi

¢S€
n ¢

2eNnPe
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Spectrum of the NP operator on confocal ellipses

From these formulas,

« |ags) <0 a « |add! 0 a
R R R R e LA
where
1 P _ o= MPi 1 enPi | e pi
- e”;iz—ﬁzngpi 261“)6 » B= e”pgffnepi”pi e
2enpe 2e2npe 2enpe 2e2npe

(Inha Univ.)




ctrum of the NP o or on confocal elli

Lemma

The eigenvalues of K* are £A1,, and £A2, (n=0,1,2,...) where

)‘1,71 _ i <672npe _ e*QTLPi _ \/(6*2”% _ 672npi)2 + 4672n(pﬁfpi)) ,
AQ,n _ i <€72npﬁ _ 6*2774/71' + \/(e—2npe _ e—2npi)2 + 46—2n(pe—pi)) ,

and eigenfunctions (not normalized) corresponding to Ain, —A1,n, A2,n, —A2,n are,
respectively,

1+ al,nqﬁff 1— | b ff 204 ag,nqﬁff e | bt
\I/n_|:b¢ce:|a \Iln_|: :|a \I/n_|:b¢ce:|a \Iln_|: ’

n n
Se Se
n®n a2,n¢n n®n al,n¢n

where

-2 —2np; . .
a1 =e npe te np; + \/(672"’)5 _ 672"/’1)2 + 4672'”(/)67/)7,)7

—2 —2np; _ _ . _ 0
aon =e npe +e np; __ \/(6 2npe _ ¢ 2np1)2 + 4e 2n(pe pl)’

b, = 726*77'(.09*.07;)(1 + 67271#71).
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ctrum of the

° U Wit
product (

1+ 1+
\Ijn 7\I]n s =

24+ 2+
LA

2— 2—
\Iln 7qln s =

s =

( )
(W, 0,7 )s =
( )
( )

NP o

7n:
7>§7

SIA3/aA313313

ator on confocal elli

1,
an

2,..
d
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—np;

., are orthogonal to each other with respect to the inner

"Pi coshnp; + 2a1,,bne” "¢ coshnp; + b2 e~ "< cosh npe) ,

coshnp; + 2a2 nbne” "¢ coshnp; + biefnpc cosh npe) ,

(
(biefnpi sinhnp; + 2a2 nbne "P° sinhnp; + ag,n(fan sinh npe) ,
(
(

2 —np; - . 2 .
bne” "t sinhnp; + 2a1,nbne” "¢ sinhnp; + aj ,e” "¢ sinh npe) .




Spectrum of the NP operator on confocal ellipses

Asymptotic behaviors as n tends to co.

e I'. and I'; are sufficiently close to each other ((p. — pi) < 2p;):

\/(672an _ 672np¢)2 + 4e—2n(pe—pi) = 2€—n(0e—l)i) + O(e_n(l)e—ﬂi)).
It then follows that

Ao ~ —e~Mpe=pi) Ao ~ e Mpe=pi)

and

a1 ~ efn(Pe*Pi)7 agn ~ _efn(,oe*/%)7 by, ~ _efn(pefp,‘)'
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Spectrum of the NP operator on confocal ellipses

@ On the other hand (2p; < pe — pi):

\/(eanpe _ ef2npi)2 + 4e—2n(pe—pi)

—2npi 4 9o—2n(pe=—2pi) 4 o(e *Qn(peﬂm))

)

so that
Al ~ _e—ani’ A2 ~ e—Qn(pe—Qpi) )

) )

and

a1,n ~ 672npi’ agn ~ —€

)

*2n(Pe*2Pi)’ by, ~ —e MPe=pi),
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Spectrum of the NP operator on confocal ellipses

Lemma
(i) If pe < 3pi, then

(U35, 03 5)s, (U3, Wh)g ~m e 2o,
(i1) If pe > 3pi, then
(Ut 0 ), (W57, U )g ~ e,
and

(UL WAy, (W25 W2~ e 2epi),
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CALR on confocal ellipses

@ Assume that the source f is located outside €2, and write the
Newtonian potential of f as

F(z)=c— Z(Fﬁ[ cos nw cosh np + F sinnwsinhnp) ,
n>1

@ The series on RHS converges in 0 < p < pg iff

limsup |FE[V/" < gm0,
n—oo
@ Since f is located outside €2 the series converges in 0 < p < p., and
we infer that
lim sup |[FE[Y/™ < e,
n—oo
o Gap condition on {F} for confocal ellipses: The sequence FF is
said to satisfy the gap condition GC|p,| for some constant p, if

GClp«|: there exists a sequence {ny} with n; < ng < --- such that

; - - e—Pi) p2Nk Px 2 12y —
klggoe (Mkr1=nk) (pe—pi)  2nkp (‘Fr—z,:’ +|Fr ?) = 0.
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CALR on confocal ellipses

Theorem (Main result)

Let f be the source function supported in R*\ Q and F be the Newtonian potential of
f. Let

o _{3’)62_[" if pe < 3ps,
2(pe - pz) Zf Pe > 3p1

(i) If F does not extend as a harmonic function in {p < p.}, then

limsup Es5 = oo
§—0

and there is C independent of 6 such that |Vs(z)| < C for all z satisfying
p > po provided that po > 2pe — pi if pe < 3pi and po > 3pe — 4pi if pe > 3pi.
So weak CALR takes place.

(ii) If, in addition, the coefficients F¥ of F satisfy GClp.], then CALR takes place,
ie.,

lim Fs = oo.
§—0

(iii) If f is supported outside ps (so that F' extends as a harmonic function in
{p < p«}), then there is a constant C' such that Es < C for all d.
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CALR on confocal ellipses

Remarks

e GClp.| is a condition on the gap (ng41 — ng) among nonzero
coefficients F.

o If f is a dipole source (f(x) = a - Vdy,(z)) for some xg, then
F(z) = a-V;G(x — x0) satisfies GC|p] if po < p (the source zg is
located inside p.), where G(z) = 5= In|z].

o It is interesting to observe that if we put p. = Inr, and p; = Inr;,

then 3
OPe = Pi _ 1y i/,

2
so the thin case is similar to the circular case.

e It is not known whether there is a source f for which only the
weak CALR, not CALR, takes place.
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CALR on confocal ellipses

Sketch of proof (pe < 3p;): g is given by

—nF, sinh np, ¢t —nF, cosh np,¢s¢

oF =+ o3 ci — St

» nF " sinhnp;¢ nkF_ coshnp;¢

g:= 881F — § I: n Pi®n :| E |: n PiPn
Ove n>1

We have

<97\P111+>SNF7L+enpi7 <g7 \II}L7>SNFnienpi7
(9, \P721+>S ~ F?i_enpiv (9, @721_>S ~ —F e
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CALR on confocal ellipses

Since

\I/n+>s k+ <gv quf)s k—
=2 > o U+ .2
)\k n +25 <\I/n ,\I/ > (*)\k,n +25)<‘I/n ,\I/n >S

k=12 n
We have
{9, \Iln+>S ci
|Sr; [p:](x)] < ,;1:22”: (Nim + 26) (UEF WEHY Sr; [n](2)
9V~ si
" kzm ; —Aeyn + z,;)<\1;§>—g’ wE), Sr, [on](z)

< O3 e @) (e o)) + [Fi e o))

<CS e (IR + | Fy )

for p > p;. Similarly we have, for p > pe,

[Srelpel(@)] < C Y (IFT |+ |Fy [)e"Premrde.
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CALR on confocal ellipses

We conclude that
Vs(z)| < |F(2)] + |Sr; [wil ()] + [Sr. [wel ()| < C

regardless of § for any p > pg with pg > 2p. — p;.
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CALR on confocal ellipses

Next we investigate the behavior of Es as 6 — 0.

o WEN) Ll W) P
SRIPIPO v (mzwm TR

k=1,2n=1

o S0 S (FL (B )

— e—2n(pe—pi) | §2

Suppose that F' does not extend as a harmonic function in {(p,w) : p < p«}. Then

we have

limsup |F,7 '/ > e or limsup|F, |"/" >e ",

n— oo n—oo

So, there is a subsequence, say {nx}, such that, for all k,
M (B + (B )?) > 1.

Let 6, = e ™ (Pe=ri) for k =1,2,.... Then, we have

(B + (F)?) = o0

- 5kne2””€ )2 4 (Fn_)z) o 5knk62"k(296_9i)
Z —2n(pe Pi) + §2 - 2

as k — oo. This proves (i).
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ALR on confocal ellips

Suppose that Fi¥ satisfies GC|p«] and {ni} be the subsequence appearing in the
condition. For § — 0, let k(4) be the number such that

nges) < — < N(s)41-

— pi

Then, we have
5> e*nk(s)ﬂ(pefpi)’

and hence
iy S5 ST+ (B ) SO (B + (P )
5 & Z e~ 2"(pe pi) + §2 = e—2n(8)(pe—pi)

— 2 -
>nk(5)€ (Mg (s)+1—"k(5)) (Pe— pz) g (s5)P (| k(S)‘ +‘F”k(6)| ) 00

as 0 — 0. This proves (ii).
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CALR on confocal ellipses

If the source f is located outside p., then its Newtonian potential F' is harmonic in
a neighborhood of {(p,w) : p < p«}, and hence

lim sup |Fni|1/n <e e

n— oo

for some € > 0. Thus it follows that

Es <CY ne® ((F,1)? + (F,)?) < o.

n=1

Thank you.
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