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Introduction Problem of CALR

The dielectric problem: for a given compactly supported function
f ,
∫
R2 fdx = 0 ,

∇ · εδ∇Vδ = f in R2 ,

with decay condition Vδ(x)→ 0 as |x| → ∞ .

The distribution of the dielectric constant (permittivity) εδ is given
by

εδ =


1 in R2 \ Ω ,

−1 + iδ in Ω \D ,
1 in D

for a loss parameter δ > 0 .

εδ=−1+iδ

εδ=1

εδ=1

D

D\Ω
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Introduction Problem of CALR

In quasistatic regime, the time averaged electromagnetic power
produced by the source dissipated into heat approximately

Eδ := =
∫
R2

εδ|∇Vδ|2dx =

∫
Ω\D

δ|∇Vδ|2dx

Problem of the cloaking by anomalous localized resonance (CALR):
Characterizing the source f such that the following two conditions
are satisfied:

lim
δ→0

Eδ =∞ as δ → 0 , (1)

and
|Vδ(x)/

√
Eδ| → 0 as δ → 0 when |x| > r0 . (2)

εδ=−1+iδ

εδ=1

εδ=1

D

D\Ω

|x|=r0
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Introduction Problem of CALR

Cloaking by anomalous localized resonance:
(1) implies that an infinite amount of energy dissipated per unit
time in the limit δ → 0

Scaling the solution Vδ by 1/
√
Eδ, the energy dissipation becomes

constant (independent of δ)
(2) says that the scaled solution approaches zero as δ → 0, so the
effect of the source becomes negligible. (the source is essentially
invisible)
weak CARL: limits in (1, 2) are replaced by limsup.
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Introduction Results and Motivations

The recent results and motivations
The anomalous localized resonance was first discovered by
Nicorovici, McPhedran, and Milton (Optical and dielectric
properties of partially resonant composites, PRB, 1994)
ALR is related invisibility cloaking, Milton and Nocorovici (On the
cloaking effects associated with anomalous localized resonance,
PRSA, 2006)
The condition (1) results the solution Vδ oscillates very rapidly as
δ tends to zero.

- Numerical simulations[NMM, MN] shows that the oscillation takes
places near the interfaces ∂Ω and ∂D .

In [MN], if the core and the shell are concentric disks of radii ri
and re, and f is a polarizable dipole located at y
(f(x) = a · ∇δ(x− y)), then there is a critical radius

r∗ =
√
r3
e/ri

such that for y outside r∗.
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Introduction Results and Motivations

In the recent paper of Ammari, Ciraolo, Kang, Lee, and Milton
(Spectral theory of a Neumann-Poincaré-type operator and
analysis of cloaking due to anomalous localized resonance, ARMA,
2013), a general method to analyze CALR has been developed

- The condition (1) can characterized in terms of the spectrum of the
Neumann-Poincaré type operator associated with the double
interface dielectric equation.

- Using spectral characterization, for concentric disks, it has been
shown that CALR does not occur for any source f supported
outside r∗ =

√
r3e/ri.

- Furthermore, if the Newtonian potential of f satisfies an additional
mild condition on its Fourier coefficients, then CALR take place.
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Introduction Results and Motivations

These results were extended in (Kohn, Lu, Schweizer and
Weinstein, A variational perspective on cloaking by anomalous
localized resonance, preprint) to the case when the core is not
radial by using variational approach with assumption f is
supported on circles.
The circular structure seems the only known coated structure where
CALR occurs, and it it of interest to find such a structure other
than CALR takes place.
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Neumann-Poincaré operator

The single layer potential on a function ϕ ∈ L2(Γ) is defined by

SΓ[ϕ](x) =
1

2π

∫
Γ

ln |x− y|ϕ(y)dσ(t), x ∈ R2 .

The Neumann-Poincaré operator on Γ is defined by

K∗Γ[ϕ](x) =
1

2π

∫
Γ

〈x− y, ν(x)〉
|x− y|2

ϕ(y) dσ(y), x ∈ Γ .

The solution Vδ to the dielectric problem involves two interfaces:
Γi := ∂D and Γe := ∂Ω can be represented as

Vδ(x) = F (x) + SΓi [ϕi](x) + SΓe [ϕe](x) x ∈ R2 ,

for a pair of potentials (ϕi, ϕe) ∈ H0(= L2
0(Γi)× L2

0(Γe)) , where F
is the Newtonian potential of the source term f .
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Neumann-Poincaré operator

From the continuity of the flux along interfaces, (ϕi, ϕe) satisfies

(zδI + K∗)
[
ϕi
ϕe

]
=

[
∂F
∂νi
− ∂F
∂νe

]
,

where

zδ =
iδ

2(2− iδ)
and K∗ =

[
−K∗Γi − ∂

∂νi
SΓe

∂
∂νe
SΓe K∗Γe

]

This operator K∗ : H → H(= L2(Γi)× L2(Γe)) is the
Neumann-Poincaré-type operator associated with interfaces
problem with two interface Γi and Γe.
Defining the operator S : H → H by

S =

[
SΓi SΓe

SΓi SΓe

]
.

−S is positive-definite on H0.
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Spectral characterization of CALR

K∗ is self-adjoint and compact assuming that Γi and Γe are C1,α

for some α > 0 on H0 with inner product

〈ϕ,ψ〉S = −〈ϕ,S[ψ]〉, ϕ, ψ ∈ H0 .

Suppose kerK∗ = {0} and let λ1, λ2, · · · (|λ1| ≥ |λ2| ≥ · · · ) be the
nonzero eigenvalues of K∗ and Ψn be the corresponding normalized
eigenfunctions. Then[

ϕi
ϕe

]
=
∑
n

〈g,Ψn〉S
λn + zδ

Ψn, .

The spectral characterization [ACKLM]:

Eδ ≈ δ
∑
n

|〈g,Ψn〉S|2

λ2
n + δ2

.
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Spectrum of the NP operator on confocal ellipses

A geometric structure of the CALR in the confocal ellipses:

Foci

D

εδ = 1

Foci

D
Ω \D

εδ = 1

εδ = −1 + iδ

εδ = 1 ρ∗
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Spectrum of the NP operator on confocal ellipses

The elliptic coordinates (ρ, ω) for x = (x1, x2) are defined by

x1 = R cosω cosh ρ, x2 = R sinω sinh ρ, ρ > 0, 0 ≤ Ω ≤ 2π .

In this coordinate, E = {(ρ, ω) : ρ = ρ0} is an ellipse whose foci are
(±R, 0). The length element and the normal derivative on E are
given by

dσ = Ξdω and
∂

∂ν
= Ξ−1 ∂

∂ν
,

where Ξ = Ξ(ρ0, ω) = R
√

sinh2 ρ0 + sin2 ω .
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Spectrum of the NP operator on confocal ellipses

Let E = {(ρ, ω) : ρ = ρ0}, for a harmonic polynomial given by
h(x) = cosnω(enρ + e−nρ),

SE [∇h · ν](x) =

{
(αn − 1

2)(enρ + e−nρ) cosnω, ρ ≤ ρ0

βne
−nρ cosnω , ρ > ρ0 ,

where

αn =
1

2e2nρ0
and βn =

−e2nρ0 + e−2nρ0

2
.

Similarly, h(x) = sinnω(enρ − e−nρ) ,

SE [∇h · ν](x) =

{
(−αn − 1

2)(enρ − e−nρ) sinnω, ρ ≤ ρ0

βne
−nρ sinnω , ρ > ρ0 .
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Spectrum of the NP operator on confocal ellipses

From the jump formula of the single layer potential:

K∗E [Ξ−1 cosnω] = αnΞ−1 cosnω

K∗E [Ξ−1 sinnω] = −αnΞ−1 sinnω .

Lemma
αn and −αn are eigenvalues of the NP operator K∗E on the ellipse
E = {(ρ, ω) : ρ = ρ0} and corresponding eigenfunctions are
Ξ(ρ0, ω)−1 cosnω and Ξ(ρ0, ω)−1 sinnω .
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Spectrum of the NP operator on confocal ellipses

Assuming ∂D and ∂Ω are confocal ellipses with common foci (±R, 0).

∂D = Γi = {(ρ, ω) : ρ = ρi} and ∂Ω = Γe = {(ρ, ω) : ρ = ρe} .

For k = i, e and nonnegative integers n,

φckn (ω) = Ξ(ρk, ω)−1 cosnω, φskn (ω) = Ξ(ρk, ω)−1 sinnω .

for k = i, e ,

SΓk [φckn ](x) =


−e

nρ + e−nρ

2nenρk
cosnω, ρ ≤ ρk ,

−e
nρk + e−nρk

2nenρ
cosnω, ρ > ρk

SΓk [φskn ](x) =


−e

nρ − e−nρ

2nenρk
sinnω, ρ ≤ ρk ,

−e
nρk − e−nρk

2nenρ
sinnω, ρ > ρk
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Spectrum of the NP operator on confocal ellipses

Also, we have

∂

∂νi
SΓe [φ

ce
n ] = −e

nρi − e−nρi
2enρe

φcin ,

∂

∂νe
SΓi [φ

ci
n ] =

enρi + e−nρi

2enρe
φcen ,

∂

∂νi
SΓe [φ

se
n ] = −e

nρi + e−nρi

2enρe
φsin ,

∂

∂νe
SΓi [φ

si
n ] =

enρi − e−nρi
2enρe

φsen .
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Spectrum of the NP operator on confocal ellipses

From these formulas,

K∗
[
aφcin
bφcen

]
=

[
φci 0
0 φcen

]
A

[
a
b

]
, K∗

[
aφsin
bφsen

]
=

[
φsi 0
0 φsen

]
B

[
a
b

]
,

where

A =

 − 1

2e2nρi

enρi − e−nρi
2enρe

enρi + e−nρi

2enρe
1

2e2nρe

 , B =

 1

2e2nρi

enρi + e−nρi

2enρe
enρi − e−nρi

2enρe
− 1

2e2nρe

 .
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Spectrum of the NP operator on confocal ellipses

Lemma

The eigenvalues of K∗ are ±λ1,n and ±λ2,n (n = 0, 1, 2, . . .) where

λ1,n =
1

4

(
e−2nρe − e−2nρi −

√
(e−2nρe − e−2nρi)2 + 4e−2n(ρe−ρi)

)
,

λ2,n =
1

4

(
e−2nρe − e−2nρi +

√
(e−2nρe − e−2nρi)2 + 4e−2n(ρe−ρi)

)
,

and eigenfunctions (not normalized) corresponding to λ1,n,−λ1,n, λ2,n,−λ2,n are,
respectively,

Ψ1+
n =

[
a1,nφ

ci
n

bnφ
ce
n

]
, Ψ1−

n =

[
bnφ

si
n

a2,nφ
se
n

]
, Ψ2+

n =

[
a2,nφ

ci
n

bnφ
ce
n

]
, Ψ2−

n =

[
bnφ

si
n

a1,nφ
se
n

]
,

where

a1,n = e−2nρe + e−2nρi +
√

(e−2nρe − e−2nρi)2 + 4e−2n(ρe−ρi),

a2,n = e−2nρe + e−2nρi −
√

(e−2nρe − e−2nρi)2 + 4e−2n(ρe−ρi),

bn = −2e−n(ρe−ρi)(1 + e−2nρi).
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Spectrum of the NP operator on confocal ellipses

Ψ1±
n ,Ψ2±

n , n = 1, 2, . . ., are orthogonal to each other with respect to the inner
product 〈 , 〉S, and

〈Ψ1+
n ,Ψ1+

n 〉S =
π

n

(
a2

1,ne
−nρi coshnρi + 2a1,nbne

−nρe coshnρi + b2ne
−nρe coshnρe

)
,

〈Ψ1−
n ,Ψ1−

n 〉S =
π

n

(
b2ne
−nρi sinhnρi + 2a2,nbne

−nρe sinhnρi + a2
2,ne

−nρe sinhnρe
)
,

〈Ψ2+
n ,Ψ2+

n 〉S =
π

n

(
a2

2,ne
−nρi coshnρi + 2a2,nbne

−nρe coshnρi + b2ne
−nρe coshnρe

)
,

〈Ψ2−
n ,Ψ2−

n 〉S =
π

n

(
b2ne
−nρi sinhnρi + 2a1,nbne

−nρe sinhnρi + a2
1,ne

−nρe sinhnρe
)
.
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Spectrum of the NP operator on confocal ellipses

Asymptotic behaviors as n tends to ∞ .

Γe and Γi are sufficiently close to each other ((ρe − ρi) ≤ 2ρi):√
(e−2nρe − e−2nρi)2 + 4e−2n(ρe−ρi) = 2e−n(ρe−ρi) + o(e−n(ρe−ρi)).

It then follows that

λ1,n ∼ −e−n(ρe−ρi), λ2,n ∼ e−n(ρe−ρi) ,

and

a1,n ∼ e−n(ρe−ρi), a2,n ∼ −e−n(ρe−ρi), bn ∼ −e−n(ρe−ρi).
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Spectrum of the NP operator on confocal ellipses

On the other hand (2ρi < ρe − ρi):√
(e−2nρe − e−2nρi)2 + 4e−2n(ρe−ρi)

= e−2nρi + 2e−2n(ρe−2ρi) + o(e−2n(ρe−2ρi)),

so that
λ1,n ∼ −e−2nρi , λ2,n ∼ e−2n(ρe−2ρi) ,

and

a1,n ∼ e−2nρi , a2,n ∼ −e−2n(ρe−2ρi), bn ∼ −e−n(ρe−ρi).
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Spectrum of the NP operator on confocal ellipses

Lemma
(i) If ρe ≤ 3ρi, then

〈Ψ1±
n ,Ψ1±

n 〉S, 〈Ψ
2±
n ,Ψ2±

n 〉S ∼ n
−1e−2n(ρe−ρi).

(ii) If ρe > 3ρi, then

〈Ψ1+
n ,Ψ1+

n 〉S, 〈Ψ
2−
n ,Ψ2−

n 〉S ∼ n
−1e−4nρi ,

and

〈Ψ1−
n ,Ψ1−

n 〉S, 〈Ψ
2+
n ,Ψ2+

n 〉S ∼ n
−1e−2n(ρe−ρi).
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CALR on confocal ellipses

Assume that the source f is located outside Ω , and write the
Newtonian potential of f as

F (x) = c−
∑
n≥1

(F+
n cosnω coshnρ+ F−n sinnω sinhnρ) ,

The series on RHS converges in 0 < ρ < ρ0 iff

lim sup
n→∞

|F±n |1/n ≤ e−ρ0 .

Since f is located outside Ω the series converges in 0 < ρ < ρe , and
we infer that

lim sup
n→∞

|F±n |1/n ≤ e−ρe .

Gap condition on {F±n } for confocal ellipses: The sequence F±n is
said to satisfy the gap condition GC[ρ∗] for some constant ρ∗ if

GC[ρ∗]: there exists a sequence {nk} with n1 < n2 < · · · such that

lim
k→∞

e−(nk+1−nk)(ρe−ρi)e2nkρ∗(|F+
nk
|2 + |F−nk |

2) =∞.
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CALR on confocal ellipses

Theorem (Main result)

Let f be the source function supported in R2 \Ω and F be the Newtonian potential of
f . Let

ρ∗ =

{
3ρe − ρi

2
if ρe ≤ 3ρi,

2(ρe − ρi) if ρe > 3ρi.

(i) If F does not extend as a harmonic function in {ρ < ρ∗}, then

lim sup
δ→0

Eδ =∞

and there is C independent of δ such that |Vδ(x)| ≤ C for all x satisfying
ρ ≥ ρ0 provided that ρ0 > 2ρe − ρi if ρe ≤ 3ρi and ρ0 > 3ρe − 4ρi if ρe > 3ρi.
So weak CALR takes place.

(ii) If, in addition, the coefficients F±n of F satisfy GC[ρ∗], then CALR takes place,
i.e.,

lim
δ→0

Eδ =∞.

(iii) If f is supported outside ρ∗ (so that F extends as a harmonic function in
{ρ ≤ ρ∗}), then there is a constant C such that Eδ ≤ C for all δ.
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CALR on confocal ellipses

Remarks
GC[ρ∗] is a condition on the gap (nk+1 − nk) among nonzero
coefficients F±n .
If f is a dipole source (f(x) = a · ∇δx0(x)) for some x0, then
F (x) = a · ∇xG(x− x0) satisfies GC[ρ∗] if ρ0 < ρ (the source x0 is
located inside ρ∗), where G(x) = 1

2π ln |x|.
It is interesting to observe that if we put ρe = ln re and ρi = ln ri,
then

3ρe − ρi
2

= ln
√
r3
e/r1,

so the thin case is similar to the circular case.
It is not known whether there is a source f for which only the
weak CALR, not CALR, takes place.
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CALR on confocal ellipses

Sketch of proof (ρe ≤ 3ρi): g is given by

g :=

[
∂F
∂νi
− ∂F
∂νe

]
=
∑
n≥1

[
nF+

n sinhnρiφ
ci
n

−nF+
n sinhnρeφ

ce
n

]
+
∑
n≥1

[
nF−n coshnρiφ

si
n

−nF−n coshnρeφ
se
n

]
.

We have

〈g,Ψ1+
n 〉S ∼ F

+
n e

nρi , 〈g,Ψ1−
n 〉S ∼ F

−
n e

nρi ,

〈g,Ψ2+
n 〉S ∼ F

+
n e

nρi , 〈g,Ψ2−
n 〉S ∼ −F

−
n e

nρi .
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CALR on confocal ellipses

Since[
ϕi
ϕe

]
=
∑
k=1,2

∑
n

[
〈g,Ψk+

n 〉S
(λk,n + zδ)〈Ψk+

n ,Ψk+
n 〉S

Ψk+
n +

〈g,Ψk−
n 〉S

(−λk,n + zδ)〈Ψk−
n ,Ψk−

n 〉S
Ψk−
n

]
.

We have

|SΓi [ϕi](x)| ≤
∑
k=1,2

∑
n

∣∣∣∣∣ ak,n〈g,Ψk+
n 〉S

(λk,n + zδ)〈Ψk+
n ,Ψk+

n 〉S
SΓi [φ

ci
n ](x)

∣∣∣∣∣
+
∑
k=1,2

∑
n

∣∣∣∣∣ bn〈g,Ψk−
n 〉S

(−λk,n + zδ)〈Ψk−
n ,Ψk−

n 〉S
SΓi [φ

si
n ](x)

∣∣∣∣∣
≤ C

∑
n

nen(2ρe−ρi)
(∣∣∣F+

n SΓi [φ
ci
n ](x)

∣∣∣+
∣∣∣F−n SΓi [φ

si
n ](x)

∣∣∣)
≤ C

∑
n

e2nρee−nρ(|F+
n |+ |F−n |)

for ρ > ρi. Similarly we have, for ρ > ρe,

|SΓe [ϕe](x)| ≤ C
∑
n

(|F+
n |+ |F−n |)en(3ρe−ρi)e−nρ.
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CALR on confocal ellipses

We conclude that

|Vδ(x)| ≤ |F (x)|+ |SΓi [ϕi](x)|+ |SΓe [ϕe](x)| < C

regardless of δ for any ρ ≥ ρ0 with ρ0 > 2ρe − ρi.

Daewon Chung (Inha Univ.) Feb. 12. 2014 29 / 32



CALR on confocal ellipses

Next we investigate the behavior of Eδ as δ → 0.

Eδ ≈ δ
∑
k=1,2

∞∑
n=1

1

λ2
k,n + δ2

(
|〈g,Ψk+

n 〉S|
2

〈Ψk+
n ,Ψk+

n 〉S
+
|〈g,Ψk−

n 〉S|
2

〈Ψk−
n ,Ψk−

n 〉S

)

≈
∞∑
n=1

δne2nρe((F+
n )2 + (F−n )2)

e−2n(ρe−ρi) + δ2
.

Suppose that F does not extend as a harmonic function in {(ρ, ω) : ρ < ρ∗}. Then
we have

lim sup
n→∞

|F+
n |1/n > e−ρ∗ or lim sup

n→∞
|F−n |1/n > e−ρ∗ .

So, there is a subsequence, say {nk}, such that, for all k,

e2nkρ∗((F+
nk )2 + (F−nk )2) ≥ 1 .

Let δk = e−nk(ρe−ρi) for k = 1, 2, . . .. Then, we have

Eδk ≈
∞∑
n=1

δkne
2nρe((F+

n )2 + (F−n )2)

e−2n(ρe−ρi) + δ2
≥ δknke

2nk(2ρe−ρi)

2
((F+

k )2 + (F−k )2)→∞

as k →∞. This proves (i).
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CALR on confocal ellipses

Suppose that F±n satisfies GC[ρ∗] and {nk} be the subsequence appearing in the
condition. For δ → 0, let k(δ) be the number such that

nk(δ) ≤ −
ln δ

ρe − ρi
< nk(δ)+1.

Then, we have
δ > e−nk(δ)+1(ρe−ρi),

and hence

Eδ ≈
∞∑
n=1

δne2nρe((F+
n )2 + (F−n )2)

e−2n(ρe−ρi) + δ2
≥
δnk(δ)e

2nk(δ)ρe((F+
nk(δ)

)2 + (F−nk(δ))
2)

e−2nk(δ)(ρe−ρi)

≥ nk(δ)e
−(nk(δ)+1−nk(δ))(ρe−ρi)e2nk(δ)ρ∗(|F+

nk(δ)
|2 + |F−nk(δ) |

2)→∞

as δ → 0. This proves (ii).
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CALR on confocal ellipses

If the source f is located outside ρ∗, then its Newtonian potential F is harmonic in
a neighborhood of {(ρ, ω) : ρ ≤ ρ∗}, and hence

lim sup
n→∞

|F±n |1/n ≤ e−ρ∗−ε

for some ε > 0. Thus it follows that

Eδ ≤ C
∞∑
n=1

ne2nρ∗((F+
n )2 + (F−n )2) <∞.

Thank you.
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