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The hydrodynamic stability problem

• The Navier-Stokes equations:

- The motion of an incompressible homogeneous viscous Newtonian fluid in Ω is
described by the following nonlinear system of partial differential equations, named
after Navier (1822) and Stokes (1845):{

∂tv + (v · ∇)v − ν∆v +∇p = 0 in Q
divv = 0 in Q,

(1)

where
Ω ⊂ R3 : a smooth domain

(x, t) ∈ Q = Ω × (0,∞)

ν > 0 : the viscosity constant

v = (v1(x, t), v2(x, t), v3(x, t)) : the (unknown) velocity

p = p(x, t) : the (unknown) pressure

(v · ∇)v =

(
3∑
i=1

vi
∂

∂xi

)
v = (v · ∇v1,v · ∇v2,v · ∇v3)
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The hydrodynamic stability problem

• The stability problem:

- A very interesting problem in mathematical fluid mechanics is to prove the stability
or instability of a given stationary solution of (1).

- For a given stationary solution

v0 = (v1
0(x), v2

0(x), v3
0(x))

of (1), let us consider the following IBVP
∂tv + (v · ∇)v − ν∆v +∇p = 0 in Q

divv = 0 in Q
v = v0 on ∂Ω× (0,∞)

v(·, 0) = v0 + a in Ω,

(2)

where a = (a1(x), a2(x), a3(x)) is an initial perturbation.

- The stationary solution v0 is stable if there is a small positive number ε such that
for any a with ||a|| ≤ ε, the IBVP (2) has a unique global solution v = v(t), which
tends to v0 as t→∞.
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The hydrodynamic stability problem

• A mathematical formulation of the stability problem:

- Instead of IBVP (2), we may consider the following equivalent problem for the
perturbation u = v − v0:

∂tu + (u · ∇)u− ν∆̃u +∇p = 0 in Q
divu = 0 in Q

u = 0 on ∂Ω× (0,∞)
u(0) = a in Ω,

(3)

where
−ν∆̃u = −ν∆u + (v0 · ∇)u + (u · ∇)v0.

- Note that
a = 0 on ∂Ω and diva = 0 in Ω.

- Let X(Ω) be a Banach space of some vector fields in Ω such that[
C∞0 (Ω)

]3 ⊂ X(Ω). Then we denote by X0,σ(Ω) the closure of the set

C∞0,σ(Ω) = {f ∈ [C∞0 (Ω)]3 : div f = 0}

in X(Ω).

Hyunseok Kim Stability of plane Couette flows



The hydrodynamic stability problem

- Typical examples of X0,σ(Ω) are

Lqσ(Ω) = Lq0,σ(Ω) and H1,q
0,σ(Ω)

for 1 < q <∞. Recall that

H1,q(Ω) = {u ∈ Lq(Ω) : ∇u ∈ Lq(Ω)}

and
H1,q

0,σ(Ω) =
{
u ∈ H1,q(Ω) : u|∂Ω = 0, divu = 0

}
.

Definition. The stationary solution v0 is (exponentially) stable in X0,σ(Ω) if there is
a number ε > 0 such that for each a ∈ X0,σ(Ω) with ||a||X(Ω) ≤ ε, the perturbation
problem (3) has a unique global solution u ∈ C([0,∞);X0,σ(Ω)), which decays
(exponentially) as t→∞.
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The hydrodynamic stability problem

• Stability for large ν:

- The stability of v0 is rather trivial if the viscosity constant ν is sufficiently large.
Let Ω be bounded. From (3), we have

d

dt

∫
Ω

1

2
|u|2 dx+ ν

∫
Ω
|∇u|2 dx = −

∫
Ω

(u · ∇)v0 · u dx.

In view of the Poincaré inequality∫
Ω
|u|2 dx ≤ C

∫
Ω
|∇u|2 dx,

we have

d

dt
||u(t)||2

L2(Ω)
+ C−1ν||u(t)||2

L2(Ω)
≤ 2||∇v0||L∞(Ω)||u(t)||2

L2(Ω)
.

Hence if ν is so large that

δ := C−1ν − 2||∇v0||L∞(Ω) > 0,

then
||u(t)||2

L2(Ω)
≤ e−δt||a||2

L2(Ω)
.
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The hydrodynamic stability problem

• Stability for small ν:

- One major mathematical problem of the hydrodynamic stability theory is to prove
the stability of a specific stationary flow v0 for small viscosity constant ν.

• Plane Couette flows:

- In this talk, we study the stability of a plane Couette flow

v0 = (x3, 0, 0)

defined in the infinite layer domain

Ω =
{
x = (x′, x3) ∈ R3 : −1 < x3 < 1

}
.

- The plane Couette flow is one of few known stationary flows whose stability has been
proved rigorously. It is of course extremely simple.
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Stability results for the plane Couette flow

• The linear stability analysis:

- Let P be the Helmholtz projection of L2(Ω) onto L2
σ(Ω):

u = Pu +∇p

for some p ∈ H1
loc(Ω) with ∇p ∈ L2(Ω). We consider

L : D(L) = H1,2
0,σ(Ω) ∩H2,2(Ω)→ L2

σ(Ω),

defined by

Lu = P [−ν∆u + (v0 · ∇)u + (u · ∇)v0] for all u ∈ D(L).

Then (3) can be reduced to the following abstract Cauchy problem in L2
σ(Ω):{

∂tu(t) = −Lu(t)− P ((u(t) · ∇)u(t))
u(0) = a.

(4)
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Stability results for the plane Couette flow

- The stability of v0 is closely related to the location of the spectrum σ(−L) of the
unbounded operator −L in L2

σ(Ω). Recall that σ(−L) is the complement of the
resolvent set ρ(−L) which consists of all complex λ such that λ+ L has a bounded
inverse;

(i) λ+ L : D(L)→ L2
σ(Ω) is bijective, and

(ii) there is a constant C > 0 such that

‖ (λ+ L)−1 u‖L2
σ(Ω) ≤ C‖u‖L2

σ(Ω) for all u ∈ L2
σ(Ω).

- In 1973, Romanov showed that if there is a number δ > 0 such that

Reλ ≤ −δ for all λ ∈ σ(−L), (5)

then v0 is exponentially stable in H1,2
0,σ(Ω): for each a ∈ H1,2

0,σ(Ω) with ||a||H1,2(Ω)

being sufficiently small, the problem (4) has a unique global solution

u ∈ C([0,∞);H1,2
0,σ(Ω)) which decays exponentially in H1,2

0,σ(Ω) as t→ 0.
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Stability results for the plane Couette flow

- In 1973, Romanov also showed in a nearly rigorous manner that there is a number
δ > 0 such that

Reλ ≤ −δ for all λ ∈ σP (−L), (6)

where σP (−L) is the point spectrum of −L:

σP (−L) = {λ ∈ C : λ+ L is not injective } = {all eigenvalues of − L} ⊂ σ(−L).

- A weaker version of (6) was obtained by Solopenko in 1989. He proved that

Reλ < 0 for all λ ∈ σP (−L).

- From (6), Romanov concluded that v0 is exponentially stable in H1,2
0,σ(Ω). However

this famous stability result of Romanov has not been proved completely yet.

- Two gaps of Romanov’s argument:

(i) His proof of (6) is based crucially on a numerical computation which has not
been verified yet.

(ii) He deduced (5) from (6) without a detailed proof. But this is not trivial at
all because σP (−L) 6= σ(−L) in general.
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Stability results for the plane Couette flow

• A stability result in L3
σ(Ω):

- It has been shown by Abe and Shibata (2003) and Abels and Wiegner (2005),
independently, that the Stokes operator −A = νP∆ generates an analytic semigroup
{e−tA}t≥0 on Lqσ(Ω) for each q ∈ (1,∞).

- Then Abe and Shibata proved the exponential stability of v0 in L3
σ(Ω) under the

assumption that ν is sufficiently large. In this case, the operator −L can be regarded
as a small perturbation of −A.

• An open problem:

- It remains still open to provide a rigorous proof of the stability of the plane Couette
flow in some X0,σ(Ω) for the case of small viscosity ν.
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Stability results for the plane Couette flow

• Basic ideas for our setting:

- From Romanov-Solopenko’s result, we have

Reλ < 0 for all λ ∈ σP (−L). (7)

But it remains still open to deduce from (7) that

δ = sup
λ∈σ(−L)

Reλ < 0.

For it is possible that σP (−L) has an accumulation point in the imaginary axis or
σP (−L) is a proper subset of σ(−L).

- Such a difficulty is due to the unboundedness of the domain Ω = R2 × (−1, 1): the

Sobolev embedding H1,q
0,σ(Ω) ↪→ Lqσ(Ω) is continuous but not compact.
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Stability results for the plane Couette flow

- To circumvent that difficulty, we consider the Sobolev spaces consisting of functions
in Ω which are periodic in x′ = (x1, x2).

- Note that if 1 < q <∞, then every a ∈ Lqσ(Ω) satisfies

|a(x)| → 0 as |x| → 0.

Instead of this boundary condition on a at infinity, we assume that

a(·, x3) is T-periodic for a.e. x3 ∈ (−1, 1).

Here T = [−l, l]2 denotes a torus with l > 0 fixed.

- Then the associated Sobolev spaces have the compact embedding property.
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Stability results for the plane Couette flow

• Function spaces:

- Spaces of test functions: Let D be the space of all complex-valued functions f on Ω
which can be written as

f(x′, x3) =
∑
k∈J

gk(x3) eiω<k,x′>

for some finite subset J of Z2 and some gk ∈ C∞([−1, 1]), where ω = π
l

.

- Since the set {eiω<k,·> : k ∈ Z2} is orthogonal in L2(T), the coefficients of each
f ∈ D are given uniquely by the partial Fourier series of f :

gk(x3) = f̂k(x3) :=
1

(2l)2

∫
T
f(x′, x3)e−iω<k,x′> dx′ (k ∈ Z2).

- Let us define
D0 = {f ∈ D : f = 0 on ∂Ω}

and
D0,σ =

{
f ∈ [D0]3 : div f = 0 in Ω

}
.
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Stability results for the plane Couette flow

- The Sobolev norms: if m ≥ 1 and 1 < q <∞,

||f ||0,q = ||f ||q =

[∫ 1

−1

∫
T
|f |q dx′dx3

] 1
q

and

||f ||m,q =

 ∑
|α|≤m

||Dαf ||qq

 1
q

for f ∈ D and similarly for f ∈ [D]3.

- The Sobolev spaces:

H1,q
0 = D0

||·||1,q , Hm,q = D||·||m,q ,

Lq = H0,q , Lq = [Lq ]3 , Hm,q = [Hm,q ]3 ,

Lqσ = D0,σ
||·||q and H1,q

0,σ = D0,σ
||·||1,q .
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Stability results for the plane Couette flow

• Our stability result:

Theorem (Heck, Kim, Kozono (2009))

There exists a small number ε > 0 such that for any a ∈ L3
σ with ‖a‖3 ≤ ε, there

exists a unique strong solution (u, p) of the problem (3) satisfying

u ∈ C([0,∞);L3
σ) ∩ C((0,∞);H1,3

0,σ ∩H2,3), p ∈ C((0,∞);H1,3),

∫
p dx = 0.

Furthermore there are positive constants δ and C such that

‖u(t)‖3 + t
1
2 ‖∇u(t)‖3 ≤ Ce−δt‖a‖3

for all t > 0. Here the constants ε, δ and C depend only on l and ν.

- Remarks:

(i) The exponential stability in L3
σ follows immediately from the theorem.

(ii) It should be noted that the (exponential) stability of v0 is proved for any
viscosity constant ν.
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The Helmholtz decomposition

• The Helmholtz projection Pq :

Theorem

Let 1 < q <∞. Then for each u ∈ Lq , there exists a unique v ∈ Lqσ such that

u = v +∇p for some p ∈ H1,q .

Moreover we have
||v||q + ||∇p||q ≤ C(q)||u||q .

- By this theorem, the mapping

u ∈ Lq 7→ v = Pq u ∈ Lqσ

defines a bounded linear operator Pq (called the Helmholtz projection) of Lq onto Lqσ .

Hyunseok Kim Stability of plane Couette flows



The Helmholtz decomposition

- The crucial step of the proof of the theorem is to show that for each u in [D0]3,
there exist v ∈ D ∩ Lqσ and p ∈ D such that

u = v +∇p and ‖v‖q + ‖∇p‖q ≤ C(q)‖u‖q .

- Or equivalently, it suffices to prove the existence of p ∈ D such that −∆p = divu in Ω
∂x3p = 0 on ∂Ω
‖∇p‖q ≤ C(q)‖u‖q .

- Our major tools are the partial Fourier series and the Marcinkiewicz multiplier
theorem.
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The Helmholtz decomposition

• The Marcinkiewicz multiplier theorem

- A complex sequence a = (ak)k∈Z2 is a Fourier Multiplier on Lq((−π, π)2) if∣∣∣∣∣∣
∣∣∣∣∣∣
∑

k∈Z2

akcke
i〈k,·〉

∣∣∣∣∣∣
∣∣∣∣∣∣
q

≤ C

∣∣∣∣∣∣
∣∣∣∣∣∣
∑

k∈Z2

cke
i〈k,·〉

∣∣∣∣∣∣
∣∣∣∣∣∣
q

for any complex sequence c = (ck)k∈Z2 with ck 6= 0 for finitely many k ∈ Z2.

- Let a = (ak)k∈Z2 be a Fourier multiplier on Lq((−π, π)2). Then the mapping∑
k∈Z2

cke
i〈k,·〉 7→

∑
k∈Z2

akcke
i〈k,·〉

extends uniquely to a bounded operator Ta on Lq((−π, π)2).
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The Helmholtz decomposition

- From a classical multiplier theorem due to Marcinkiewicz (1939), we obtain

Theorem

Let a = (ak)k∈Z2 be a complex sequence such that

ak = m(k) (k ∈ Z2 \ {0})

for some m ∈ C2(R2 \ {0}). Suppose that

[m] := sup
γ∈{0,1}2

sup
ξ 6=0
|ξγDγm(ξ)| <∞. (8)

Then for any q ∈ (1,∞), the sequence a = (ak)k∈Z2 is a Fourier multiplier on
Lq((−π, π)2) and

‖Ta‖Lq→Lq ≤ C(q) max {[m], |a0|} .
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The Helmholtz decomposition

• Proof of the Helmholtz decomposition theorem:

- We have to show that for each u ∈ [D0]3 there exists p ∈ D satisfying −∆p = divu in Ω
∂x3p = 0 on ∂Ω

‖∇p‖q ≤ C(q)‖u‖q .
(9)

- The given vector field u can be written as

u(x′, xn) =
∑

k∈Z2

ûk(x3) eiω<k,x′>

for some ûk with ûk 6= 0 for only finitely many k ∈ Z2. Then p ∈ D is a solution to
(9) if and only if each partial Fourier coefficient p̂k of p satisfies{ (

µ2 − ∂2
x3

)
p̂k = iωk · û′k + ∂x3 û

3
k, −1 < xn < 1

∂x3 p̂k(±1) = 0,

where µ = |ωk|.
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The Helmholtz decomposition

- Solving this boundary value problem, we derive an explicit solution:

p̂0(x3) =

∫ x3

−1
û3

0(y3) dyn

and

p̂k(x3) =

∫ 1

−1
G(µ, x3, y3)

(
iωk · û′k(k, y3) + ∂y3 û

n
k(y3)

)
dy3

for k 6= 0, where

G(µ, x3, y3) =
e−µ(2+x3+y3) + e−µ(2−x3−y3) + e−µ|x3−y3| + e−µ(4−|x3−y3|)

2µ(1− e−4µ)
.

- Define the function p by

p(x′, xn) =
∑

k∈Z2

p̂k(xn) eiω<k,x′>.

Then p is obviously a solution in D to the Neumann problem (9).
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The Helmholtz decomposition

- Let α = (α′, α3) be a fixed multi-index such that α′ ∈ N2
0, α3 ∈ N0 and

|α| = |α′|+ α3 = 1. Then for each k ∈ Z2 \ {0}, the k-th partial Fourier coefficient
of Dαp is given by

(iωk)α
′
∂α3
x3
p̂k(x3)

= (iωk)α
′
∂α3
x3

∫ 1

−1
G(µ, x3, y3)

(
iωk · û′k(k, y3) + ∂y3 û

n
k(y3)

)
dy3

=

∫ 1

−1
∂α3
x3
G(µ, x3, y3)(iωk)α

′
(iωk) · û′k(k, y3) dy3

−
∫ 1

−1
∂y3∂

α3
x3
G(µ, x3, y3)(iωk)α

′
û3
k(y3) dy3
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The Helmholtz decomposition

- By the Marcinkiewicz multiplier theorem,

‖Dαp(·, x3)‖Lq(T) ≤ C
∫ 1

−1

[
∂α3
x3
G(µ, x3, y3)(iωk)α

′
(iωk)

]
‖u′(·, y3)‖Lq(T) dy3

+ C

∫ 1

−1

[
∂y3∂

α3
x3
G(µ, x3, y3)(iωk)α

′]
‖u3(·, y3)‖Lq(T) dy3.

- By a direct calculation,

‖Dαp(·, x3)‖Lq(T) ≤ C
∫ 1

−1

(
1

2 + x3 + y3
+

1

2− x3 − y3
+ · · ·

)
‖u(·, y3)‖Lq(T) dy3.

- Hence by the Lq-boundedness of the Hilbert transform, we obtain

‖Dαp‖q ≤ C‖u‖q .
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Analyticity of the Stokes semigroup

• Analytic semigroups:

- Let X be a complex Banach space. Then a family (T (t))t≥0 of bounded linear
operators on X is called a (one-parameter) semigroup on X if it satisfies the
functional equation:

(FE)

{
T (t+ s) = T (t)T (s) for all t, s ≥ 0

T (0) = I.

The semigroup (T (t))t≥0 is said to be strongly continuous if for each x ∈ X the
function T (·)x : [0,∞)→ X is continuous. A strongly continuous semigroup is also
called a C0-semigroup.

- Let (T (t))t≥0 be a C0-semigroup on X. Then its (infinitesimal) generator is a linear
operator in X, defined by

Ax = lim
h→0+

T (h)x− x
h

for every x in

D(A) = {x ∈ X : T (·)x is right differentiable at 0} .

It is easily shown that D(A) is dense in X and A is a closed operator.
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Analyticity of the Stokes semigroup

- Consider the abstract differential equation in X:

(DE)

{
d
dt
x(t) = Ax(t) for all t > 0
x(0) = x ∈ X,

where A is a linear operator in X.

- If A is the generator of a C0-semigroup (T (t))t≥0 on X, then for each x ∈ D(A),
there exists a unique solution x(·) of (DE), which is given by x(t) = T (t)x, t ≥ 0.

- Generators of C0-semigroups are completely characterized by the so-called
Hille-Yosida generation theorem.

- For 0 < δ < π, let Σδ denote the sector of angle δ > 0:

Σδ = {z ∈ C \ {0} : |arg z| < δ}.
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Analyticity of the Stokes semigroup

- A family (T (z))z∈Σδ∪{0} of bounded linear operators on X is called an analytic
semigroup (of angle δ ∈ (0, π/2]) if

(i) T (0) = I and T (z1 + z2) = T (z1)T (z2) for all z1, z2 ∈ Σδ,

(ii) the map z 7→ T (z) is analytic in Σδ, and

(iii) limz∈Σδ′→0 T (z)x = x for all x ∈ X and δ′ ∈ (0, δ).

In addition, if
(iv) ‖T (·)‖ is bounded in Σδ′ for all δ′ ∈ (0, δ),

then (T (z))z∈Σδ∪{0} is called a bounded analytic semigroup.

- Let A be the generator of an analytic semigroup; that is, it is the generator of a
C0-semigroup that can be extended (uniquely) to an analytic semigroup
(T (z))z∈Σδ∪{0}. Then for each x ∈ X, there exists a unique solution x(·) of (DE),
which is given by x(t) = T (t)x, t ≥ 0.
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Analyticity of the Stokes semigroup

Theorem (A generation theorem)

A closed linear operator A in X with dense domain is the generator of a bounded
analytic semigroup (T (z))z∈Σδ∪{0} if and only if it is sectorial of angle δ ∈ (0, π/2];
that is,

(i) the sector Σπ/2+δ is contained in the resolvent set ρ(A) of A, and
(ii) for each ε ∈ (0, δ) there exists a constant Mε ≥ 1 such that

‖(λ−A)−1‖ ≤
Mε

|λ|
for all λ ∈ Σπ/2+δ−ε \ {0}.

Theorem (A perturbation theorem)

Let A be the generator of an analytic semigroup on X. Then there exists a constant
δ > 0 such that if B is any closed linear operator in X satisfying

D(A) ⊂ D(B) and ‖Bx‖ ≤ δ‖Ax‖+ C‖x‖ for all x ∈ D(A),

where C is a constant, then A+ B is the generator of an analytic semigroup on X.
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Analyticity of the Stokes semigroup

• The resolvent estimate for the Laplace operator:

- Consider the resolvent problem for the Laplacian with periodic-Dirichlet boundary
condition:

(λ−∆)u = f in Ω, (10)

where
λ ∈ C \ (−∞, 0), u ∈ H1,q

0 ∩H2,q and f ∈ Lq .

Here H1,q
0 denotes the closure of D0 in H1,q :

H1,q
0 =

{
u ∈ H1,q : u = 0 on ∂Ω

}
.

Theorem

Let 1 < q <∞, 0 < ε < π
2

and λ ∈ Σπ−ε ∪ {0}. Then for any f ∈ Lq , there exists a

unique solution u ∈ H1,q
0 ∩H2,q of the resolvent equation (10). Furthermore we have

|λ|‖u‖q + ‖u‖2,q ≤ Cε(q)‖f‖q .
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Analyticity of the Stokes semigroup

• Idea of proof:

- We have to show that for any f ∈ D, there exists u ∈ D0 satisfying{
(λ−∆)u = f in Ω

|λ|‖u‖q + ‖∇2u‖q ≤ Cε(q)‖f‖q .
(11)

- Taking the partial Fourier series, we have{ (
µ2 − ∂2

xn

)
ûk = f̂k −1 < xn < 1

ûk(±1) = 0
,

where µ = µ(|ωk|) is the unique µ ∈ Σ(π−ε)/2 such that µ2 = λ+ |ωk|2. This
problem has a unique solution ûk ∈ C∞([−1, 1]), given by

ûk(x3) =

∫ 1

−1
K(µ(|ωk|), x3, y3)f̂k(y3) dy3

with the kernel K defined by

K(µ, x3, y3) =
e−µ(2+x3+y3) + e−µ(2−x3−y3) − e−µ|x3−y3| − e−µ(4−|x3−y3|)

2µ(1− e−4µ)
.
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Analyticity of the Stokes semigroup

- Then the Marcinkiewicz multiplier theorem can be used to deduce

|λ|‖u‖q + ‖∇2u‖q ≤ Cε(q)‖f‖q .

• Applications of the resolvent estimate:

- For 1 < q <∞, we define

∆qu = ∆u for all u ∈ D(∆q) = H1,q
0 ∩H2,q .

Then ∆q is a closed linear operator in Lq with dense domain.

- The resolvent estimate implies that ∆q generates a C0-semigroup {et∆q}t≥0 that
can be extended to a bounded analytic semigroup.

- Hence for each a ∈ Lq , the heat equation{
ut = ∆u in Ω× (0,∞)

u(·, 0) = a in Ω

has a unique solution u satisfying

u ∈ C([0,∞);Lq) ∩ C((0,∞);H1,q
0 ∩H2,q) and ut ∈ C((0,∞);Lq).
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Analyticity of the Stokes semigroup

• The Stokes operator −Aq :

- For 1 < q <∞, Aq is an unbounded operator in Lqσ defined by

Aqu = Pq (−ν∆u) for all u ∈ D(Aq) = H1,q
0,σ ∩H2,q .

• The resolvent estimate for −Aq :

Theorem

Let 1 < q <∞, 0 < ε < π
2

and λ ∈ Σπ−ε ∪ {0}. Then for any f ∈ Lqσ , there exists a
unique solution u ∈ D(Aq) of the Stokes resolvent equation

(λ+Aq)u = f .

Furthermore we have
|λ| ‖u‖q + ‖u‖2,q ≤ Cε(q)‖f‖q .

- Consequently, the Stokes operator −Aq generates a C0-semigroup {e−tAq}t≥0 on
Lqσ which is analtyic and bounded in every sector Σπ/2−ε, 0 < ε < π/2.

Hyunseok Kim Stability of plane Couette flows



The perturbed Stokes semigroup

• The perturbed Stokes operator −Lq :

- For 1 < q <∞, Bq and Lq are unbounded operators in Lqσ , defined by

Bqu = Pq ((v0 · ∇)u + (u · ∇)v0) for u ∈ D(Bq) = H1,q
0,σ

and
Lqu = Aqu + Bqu for u ∈ D(Lq) = D(Aq) = H1,q

0,σ ∩H2,q .

- Let u ∈ D(Aq) = H1,q
0,σ ∩H2,q be given. Recall the well-known interpolation

inequality: for any η > 0,

‖u‖1,q ≤ η‖u‖2,q + Cη‖u‖q .

Moreover, by the resolvent estimate,

‖u‖2,q ≤ C‖Aqu‖q .

Hence for any η > 0, we have

‖Bqu‖q ≤ C‖u‖1,q ≤ η‖Aqu‖q + Cη‖u‖q .
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The perturbed Stokes semigroup

- By a standard perturbation theorem, −Lq is the generator of an analytic semigroup
{e−tLq}t≥0 on Lqσ . Moreover, for each ε ∈ (0, π) there are constants r > 0 and
M ≥ 1 such that

Σπ−ε ∩ {z ∈ C : |z| > r} ⊂ ρ(−Lq)

and

‖(λ+ Lq)−1‖ ≤
M

|λ|
for all λ ∈ Σπ−ε ∩ {z ∈ C : |z| > r}.

- Let λ be any point in ρ(−Lq). Then the bounded linear operator

λ+ Lq : H1,q
0,σ ∩H2,q → Lqσ

is bijective. Hence by the open mapping theorem, its inverse

(λ+ Lq)−1 : Lqσ → H1,q
0,σ ∩H2,q

is bounded. Since the embedding H1,q
0,σ ↪→ Lqσ is compact, it follows that (λ+ Lq)−1

is a compact operator on Lqσ .

- Therefore, by the spectral theory of compact operators, the spectrum σ(−Lq)
consists entirely of isolated eigenvalues and has no accumulation points except infinity.

Hyunseok Kim Stability of plane Couette flows



The perturbed Stokes semigroup

• The key lemma:

- By the regularity theory of the Stokes equations, we deduce that

σ(−Lq) = σP (−Lq) = σP (−L2).

- By the Romanov-Solopenko spectral result, we already knew

Reλ < 0 for all λ ∈ σP (−L2).

- Recall that σ(−L2) = σP (−L2), there is a constant r > 0 such that
Σ3π/4 ∩ {λ ∈ C : |λ| ≥ r} ⊂ ρ(−L2) and σ(−L2) has no accumulation points in
{λ ∈ C : |λ| ≤ r}. Hence there is a positive constant δ = δ(l, ν) such that

Reλ ≤ −2δ for all λ ∈ σ(−L2).

Lemma

There exists a positive constant δ = δ(l, ν) such that

Reλ ≤ −2δ for all λ ∈ σ(−Lq).
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The perturbed Stokes semigroup

• The Lq − Lr-estimates for {e−tLq}t≥0:

- Using the key lemma, we can show that δ − Lq is sectorial. Hence there is a
constant C > 0 such that

‖et(δ−Lq)‖ ≤ Cq for all t ≥ 0 and ‖Lqet(δ−Lq)‖ ≤
Cq

t
for all t > 0.

- Note also that Lq : H1,q
0,σ ∩H2,q → Lqσ is bijective and bounded. Hence for all

a ∈ Lqσ , we have

‖et(δ−Lq)a‖q ≤ Cq‖a‖q and ‖et(δ−Lq)a‖2,q ≤
Cq

t
‖a‖q for all t > 0.

Lemma

Let 1 < q ≤ r <∞. Then

‖Dαe−tLqa‖r ≤ Crt−
3
2

( 1
q
− 1
r

)− |α|
2 e−δt‖a‖q

for all a ∈ Lqσ , |α| ≤ 1 and 0 < t <∞.
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Proof of our stability result

• The abstract Cauchy problem in Lqσ :

- The original problem (3) can be reduced to the following abstract Cauchy problem in
Lqσ {

∂tu(t) = −Lqu(t)− Pq ((u(t) · ∇)u(t))
u(0) = a.

(12)

- Then our stability result can be reformulated as follows:

Theorem

There exists a small number ε > 0 such that for any a ∈ L3
σ with ‖a‖3 ≤ ε, the

problem (12) has a unique strong solution

u ∈ C([0,∞);L3
σ) ∩ C((0,∞);H1,3

0,σ ∩H2,3).

Furthermore there are positive constants δ and C such that

‖u(t)‖3 + t
1
2 ‖∇u(t)‖3 ≤ Ce−δt‖a‖3

for all t > 0. Here the constants ε, δ and C depend only on l and ν.
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Proof of our stability result

• Proof of the theorem:

- To solve the differential equation

ut = −L3u− P3 ((u · ∇)u) u(0) = a,

we consider the integral equation

(IE) u(t) = e−tL3a +

∫ t

0
e−(t−s)L3 [−P3 ((u · ∇)u)] (s) ds.

- Let X be the Banach space of all vector fields v ∈ C([0,∞);L3
σ) such that

t
1− 3

2q∇v ∈ C([0,∞);Lq), lim
t→0

t
1− 3

2q ||∇v(t)||q = 0 for 3 ≤ q ≤
9

2

and
||v||X = sup

0≤t<∞
eδt
(
||v(t)||3 + t

1
2 ||∇v(t)||3 + t

2
3 ||∇v(t)|| 9

2

)
<∞.

It follows easily from the Lq − Lr-estimates that if v(t) = e−tL3a for t ≥ 0, then
v ∈ X and ||v||X ≤ C||a||3.

- Applying the Banach fixed point theorem, we can solve (IE) in X for small ‖a‖3.
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