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The Boltzmann equation

¢ Velocity Distribution function:

F = F(x,&,t): velocity distribution function (number density
function) of monatomic particles (e.g. Ar, He,---).

-
-
o

\4

F(x,&, ) AxAE ~ number of particles inside AxA¢.



THE BOLTZMANN EQUATION

¢ Particle trajectory (bi-characteristics) in phase space:

ax o/ 3
a_fv E_E(th))

x(0) = x, £(0)=¢.

In the absence of collisions between particles, F = F(x,&,t) is
preserved (conserved) along the particle path:

dF d
— O F 4 X -V F+E VeF
! VR e
= atl:‘|"f'vxl:
-0

This is a transport equation in phase space.



THE BOLTZMANN EQUATION COLLISION TRANSFORMATION COLLISION OPERATOR MAXWELLIAN CONSERVATION LAWS SYMMETRY

However, when there are collisions,

dF : -
o Jump in F due to collisions|.q)jision time-

We denote Q(F, F) by the jump in F and call it "collision
operator".
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e Assumptions in the derivation of the collision operator.

1. Due to the rarefaction, multiple collisions other than binary
are neglected.

2. Collisions are LOCAL and INSTANTANEOUS

Q(F, F) operates only in the velocity variable £ in F.
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e The Boltzmann equation (1872)

|
OF +¢-VxF — —Q(F,F),
— Kn

Rate of change in F along particle trajectory
where

Q(F, F)(x,¢&, t):/m o q(& — &.,w)(F'F. — FF,)dwd..

Difficulty of the Boltzmann equation comes from the
collision operator

ETR?



THE BOLTZMANN EQUATION

e Between collisions (free transport)

ax; dé§;
= =6, &

= =0 f=1...--_N.
dt ) ) )

5=
e The linear transport equation:

OWF +&6-VyF=0, x,£€R3 t>0,
F(x,&,0) = Fo(x,&).

Then, it is easy to see that

F(X7€> t) - FO(X_ tf,f)

Next, we study the collision operator Q(F, F).
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Collisions between particle-particle

For a monatomic gas e.g.Ar, H, i.e., Molecule = atom

e Micro-reversibility (£,¢.) <  (&,&):

_ v [ [ < G [
1+1=141, €+6=¢+6, S+ =20+ 25

cf. Hard sphere, reversible, translational energy, elastic collisions
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Collision transformation

Recall the elastic collision relation:
E+&=E+¢E, P+ =P +IEP
Note that we have six unknown (¢, £.) and four scalar

equations. Therefore, for a given initial velocities (&, £.), we will
have a two parameter family of final velocities.
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e Theorem: (Collision transformation)

¢ §—((§— &) w)w,
g€ = &L+H((E-&) ww, we S2.



COLLISION TRANSFORMATION

Proof. We introduce a unit vector w € S? having the direction of
the change in velocity of the first molecule.

& —¢=Aw, A:scalar.
Note that w is well-defined unless ¢’ — £ = 0.
Then, conservation of momentum yields
g —& = —Aw.
On the other hand, conservation of energy implies

A=w- (& —9).



COLLISION TRANSFORMATION

e Theorem:

Collision transformation is an isometry from R to RS,
ie. 2L _ 4
T 0(&6x) :

o Properties of collision transformation

1. Interchange of pre collisional velocities ¢ and &, produces
an interchange of post collisional velocities ¢” and &.,.

2. Angles are unchanged by the collision, i.e.,

(& = &) - wl = 1(& = &) - wl.



COLLISION TRANSFORMATION

e Definition: Collision invariant

» = (&, &) is a collision invariant if and only if it is invariant
under the collision transformation(map), i.e.,

e(€,6) = p(&,&), €& R

Remark. 1. Every collision invariant ¢ is a function of £ + &,
and €2 + [&?, i.e.,

O(€, &) = O(E + &, €2 + &]2).

2. Summational invariant = a collision invariant which splits into
a sum of functions ¢ and &:

P(€, &) = P(&) + P(&x).
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e Theorem: Boltzmann, Carlemann, Grad

Suppose that a C? function ¢ satisfies

P(&) + (&) = (&) + @(&).

Then,
e =a+b ¢+ cl¢f

Every summational invariant is spanned by 1, &, &, &3, [€]2.



COLLISION OPERATOR

By physical argument in scattering process, the collision kernel
g can be shown to be a function of ¢, — ¢ and w.

e Boltzmann’s collision integral:

Q(F, F)(x,€,1) //M (F/F/ FF*)dg*.

F.=F(&), F=F().

For a gas of hard spheres with radius r,

q(é — & w) = r?|(& — &) - wl.

where



COLLISION OPERATOR

For an inversely proportional intermolecular potential, i.e.,

the collision kernel g takes the form

(& — & w) = Cl& = £78,(0), -3<y<H.

e Grad cut-off assumption: Replace a singular part of 3,(0) by
a smoother part so that g is integrable in -variable.
e Hard sphere, hard, Maxwellian and soft potential

~v=1 hardsphere, 0<~ <1 hard potential
v =0 Maxwellian molecule, —3 <~ <0 soft potential.



COLLISION OPERATOR

Symmetry of Q(F, F)

e Using the property of collision map,
/ Q(F. F)p(€)de
- / / / (F'F. — FE)pl(&, — &) - wldwde, e
- / / / (F'F. — FE.)pul(6 — €) - w]duwde. de
_ ///(F'F; _FF)¥ ?"* (€. — €) - w|dwdg. de.




COLLISION OPERATOR

o Theorem: Suppose that F € L'(R®) satisfies
F(&)=0(¢|™") as|¢| — oo foralln> 0.

Then, for any test function ¢ = (&) with at most polynomial
growth at infinity

o(€) =01 + |¢|™ as|¢| — oo for some m >0,
we have
JE GG
= // (F'F — FF,) £ ;sﬁl ZPe (e, — €) - w]dwde. d.




MAXWELLIAN

Maxwellian

Suppose that 0 < F € L'(R®) is rapidly decaying and such that
In F has polynomial growth at infinity.

e Boltzmann’s inequality
/Q(F F)n F(¢)d¢

:_7// (F'F' — FF.) (Z,f/)ug*—g)-mdwdf*dg

Note that

/Q(F,F)gp(g)dgzo = INF +InF,=InF+InF,
<= InF is a collision invariant.



MAXWELLIAN

By previous theorem

In¢ is a collision invariant
— Inp=a+b-t+clff, aceR, beR®
p(x,t) o le—u(x.n|2

(2,/TR9) % 2ROCD)

—= o(x,6t) =

where p,6 > 0and u € R®.



MAXWELLIAN

¢ Defintion: (Maxwellian)

. . X, 1) _leun?
F is a Maxwellian — F= M[pvu’g](g) = ’)(7)39 2RO
2

(2w R6)
cf. Local and global (absolute) Maxwellians.

e Theorem: Boltzmann

The space of collision invariants is 5-dimensional and spanned
by

wo=1, @i=&, i=1,23, ¢4:=|¢f
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H-Theorem (irreversibility)

We set
H:—/Flog Fadg¢, H—/fFIongg.
Then, H satisfies

1 FF.

(F/FI-FF.)a(¢.—¢ w)dwa,d <0,

The Boltzmann equation is a dissipative equation

cf. physical entropy = -H.



MAXWELLIAN

Note that equality holds if and only if F is in thermo-equilibrium
Q(F,F)=0

if and onl if F belong to the 5-dimensional thermo-equilbrium
manifold

{F: F=Myue, »>0,0>0ucR}

The H-Theorem says that there is a tendency for the solution F
of the Boltzmann equation to approach the equilibrium
manifold.



CONSERVATION LAWS

Conservation laws

Recall the identity

/ Q(F. F)p(c)de

:// (F’F;—FF*)“’“"*;“’ — P — €) - w]dwde. dE.

We substitute (&) = 1, ¢, |€]? into the above relation and

obtain
I\

Q(F, F)d¢ = 0.

N —

2

]



CONSERVATION LAWS

e Local conservation laws

Integrate the Boltzmann equation times ¢;,i = 0, , 4, we get

Q(F, F)d¢

I
—
AR NN
n

1
/ |£\ [0iF + € - VxF]dé
52
2

N
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Macroscopic observables

For a given kinetic density F = F(x,¢&,t), we set

p(x,t) = /ng local mass density
(pu)(x,t) = /§Fd§ local momentum density
(pE)(x,t) = /K‘Zng local energy density
(pe)(x,t) = /’5 Fd{ local internal energy density

pE = pe+ plul?.



CONSERVATION LAWS

We can further simply by introducing stress tensor and heat flux

1
pj = /(éi — ) — yFdg,  p=ZtrP,
a = [(G-ue- uPrde

For a local maxwellian F = M,

pj=0, i#j, =0 1i7=123.



CONSERVATION LAWS

[0iF + € - VxF]d¢ = 0.

CALA NS

n

/

e Conservation laws (Parts of moment system)

]

—

Otp+ Vx-(pu) =0, mass,
Ot(pu) + Vx - (pu®@ u+ P) =0, momentum,
Ot(pE) + Vx - (puE + Pu+q) =0 energy.

These are 5 scalar equations for the 14 macroscopic variables:
1 for density, 3 for gas velocity u, 1 for total energy E = e + %
6 for stress tensor P, and 3 for heat flux q. underdetermined
system.



CONSERVATION LAWS

In classical fluid dynamics the conservation laws is closed
under some constitutive relations for a stress tensor P and heat
flux g to close the local conservation laws.

¢ (Compressible Euler equations): For a monatomic gas,

2
pi =pdj, p=pRY=2pe, q-=0.

3

dip+ Y dx(pu) =0,
i=
3

2 :
at(puj) + Z aX,' (PUin + gpe) = 07 /= 172737
i=1
uf?

(o 1 ve) > 0 (14 4 Se)] o

i=1

5 equations and 5 unknown p, u, 8
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e (Compressible Navier-Stokes equations):

o Newton’s law and Fourier’s law

3
2
P = poy — (Oui+ Oy — 5 3" 0 k)
k=1
3

— HUB Z an uk5U7
k=1
qNS = _K/VXQ)
where

w o viscosity, pug: bulk viscosity, k: heat condcutivity.



CONSERVATION LAWS

The pressure p, the internal energy e together with the
viscosity coefficients p, g and the heat conductivity k are
functions of p and 6.

From the kinetic theory, we have

2pe=3p, ug=0.



Symmetry

Recall the Boltzmann equation:

OHF + & - VyF = [(&« — &) - w|(F'F, — FF.)dwdE..

bbrd x S?2

Let F = F(x,&,t) be a solution. Then, we have
e Translation invariance

F(x,&,t—1), F(x—X,£,t) @ solutions.

e Rotation invariance

F(Ux, U, t) : solution, UU* =U*U=1.

SYMMETR}
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Consider a dilation
F=XF, x=Mx £&=X¢ i=)\t
Note that
F(%,6,T) = \*F(x,&,t) = X*F(A\ 9%, A77E, \70%).

Then, by direct calculation, we have

8:F = \>709,F,

E-V;F_ OH_’Y Bf vx

Q(F,F) = (€, — ) w|(F'F! — FF,)dwdé,
bbr3 xS2

= N2t Q(F, F).
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This leads two relations for four unknowns.
—0=v—pF=a+4y.

Thus, we have a 2-parameter family of dilations.
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Summary

e The Boltzmann equation describes the dynamics of dilute
gases

e The Boltzmann equation is a dissipative system

e The compressible Euler equations can be formally derived
from the Boltzmann equation.
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