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Today, I will talk about

Inner beauty of the Boltzmann equation
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The Boltzmann equation

• Velocity Distribution function:

F = F (x , ξ, t): velocity distribution function (number density
function) of monatomic particles (e.g. Ar, He,· · · ).

. 
x

x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xx
xx
xx
xx

xx
xx

xx
xx

.(x,  )ξ

ξ

ξ

x

x

F (x , ξ, t)∆x∆ξ ≈ number of particles inside ∆x∆ξ.
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• Particle trajectory (bi-characteristics) in phase space:

dx
dt

= ξ,
dξ
dt

= E(x , t),
x(0) = x , ξ(0) = ξ.

In the absence of collisions between particles, F = F (x , ξ, t) is
preserved (conserved) along the particle path:

dF
dt

=
d
dt

F (x(t), ξ(t), t)

= ∂tF + ẋ · ∇xF + ξ̇ · ∇ξF
∣∣∣
(x(t),ξ(t),t)

= ∂tF + ξ · ∇xF
= 0.

This is a transport equation in phase space.
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However, when there are collisions,

dF
dt

= Jump in F due to collisions|collision time.

We denote Q(F ,F ) by the jump in F and call it "collision
operator".
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• Assumptions in the derivation of the collision operator.

1. Due to the rarefaction, multiple collisions other than binary
are neglected.

2. Collisions are LOCAL and INSTANTANEOUS

Q(F ,F ) operates only in the velocity variable ξ in F .
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• The Boltzmann equation (1872)

∂tF + ξ · ∇xF︸ ︷︷ ︸
Rate of change in F along particle trajectory

=
1

Kn
Q(F ,F ),

where

Q(F ,F )(x , ξ, t) =

∫
R3×S2

q(ξ − ξ∗, ω)(F ′F ′∗ − FF∗)dωdξ∗.

Difficulty of the Boltzmann equation comes from the
collision operator
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• Between collisions (free transport)

dxi

dt
= ξi ,

dξi

dt
= 0, i = 1, · · · ,N.

• The linear transport equation:

∂tF + ξ · ∇xF = 0, x , ξ ∈ R3, t > 0,
F (x , ξ,0) = F0(x , ξ).

Then, it is easy to see that

F (x , ξ, t) = F0(x − tξ, ξ).

Next, we study the collision operator Q(F ,F ).
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Collisions between particle-particle

For a monatomic gas e.g.Ar ,H, i .e.,Molecule = atom
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• Micro-reversibility (ξ, ξ∗) ⇐⇒ (ξ′, ξ′∗):

1 + 1 = 1 + 1, ξ + ξ∗ = ξ′ + ξ′∗,
|ξ|2

2
+
|ξ∗|2

2
=
|ξ′|2

2
+
|ξ′∗|2

2
.

cf. Hard sphere, reversible, translational energy, elastic collisions
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Collision transformation

Recall the elastic collision relation:

ξ + ξ∗ = ξ′ + ξ′∗, |ξ|2 + |ξ∗|2 = |ξ′|2 + |ξ′∗|2.

Note that we have six unknown (ξ′, ξ′∗) and four scalar
equations. Therefore, for a given initial velocities (ξ, ξ∗), we will
have a two parameter family of final velocities.
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• Theorem: (Collision transformation)

ξ′ = ξ − ((ξ − ξ∗) · ω)ω,
ξ′∗ = ξ∗ + ((ξ − ξ∗) · ω)ω, ω ∈ S2.



THE BOLTZMANN EQUATION COLLISION TRANSFORMATION COLLISION OPERATOR MAXWELLIAN CONSERVATION LAWS SYMMETRY OF THE BOLTZMANN EQUATION

Proof. We introduce a unit vector ω ∈ S2 having the direction of
the change in velocity of the first molecule.

ξ′ − ξ = Aω, A: scalar.

Note that ω is well-defined unless ξ′ − ξ = 0.

Then, conservation of momentum yields

ξ′∗ − ξ∗ = −Aω.

On the other hand, conservation of energy implies

A = ω · (ξ∗ − ξ).
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• Theorem:

Collision transformation is an isometry from R6 to R6,
i.e., ∂(ξ

′,ξ′∗)
∂(ξ,ξ∗)

= 1.

� Properties of collision transformation
1. Interchange of pre collisional velocities ξ and ξ∗ produces

an interchange of post collisional velocities ξ′ and ξ′∗.

2. Angles are unchanged by the collision, i.e.,

|(ξ′∗ − ξ′) · ω| = |(ξ∗ − ξ) · ω|.
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• Definition: Collision invariant

ϕ = ϕ(ξ, ξ∗) is a collision invariant if and only if it is invariant
under the collision transformation(map), i.e.,

ϕ(ξ′, ξ′∗) = ϕ(ξ, ξ∗), ξ, ξ∗ ∈ R3.

Remark. 1. Every collision invariant ϕ is a function of ξ + ξ∗
and |ξ|2 + |ξ∗|2, i.e.,

ϕ(ξ, ξ∗) = Φ(ξ + ξ∗, |ξ|2 + |ξ∗|2).

2. Summational invariant = a collision invariant which splits into
a sum of functions ξ and ξ:

ϕ(ξ, ξ∗) = ψ(ξ) + ψ(ξ∗).
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• Theorem: Boltzmann, Carlemann, Grad

Suppose that a C2 function ϕ satisfies

ϕ(ξ) + ϕ(ξ∗) = ϕ(ξ′) + ϕ(ξ′∗).

Then,
ϕ(ξ) = a + b · ξ + c|ξ|2.

Every summational invariant is spanned by 1, ξ1, ξ2, ξ3, |ξ|2.
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By physical argument in scattering process, the collision kernel
q can be shown to be a function of ξ∗ − ξ and ω.

• Boltzmann’s collision integral:

Q(F ,F )(x , ξ, t) =

∫∫
R3×S2

q(ξ∗ − ξ, ω)
(

F ′F ′∗ − FF∗
)

dξ∗.

where
F∗ = F (ξ∗), F ′ = F (ξ′).

For a gas of hard spheres with radius r ,

q(ξ∗ − ξ, ω) = r2|(ξ∗ − ξ) · ω|.
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For an inversely proportional intermolecular potential, i.e.,

F ≈ 1
r s ,

the collision kernel q takes the form

q(ξ∗ − ξ, ω) = C|ξ∗ − ξ|γβγ(θ), −3 < γ ≤ 1.

• Grad cut-off assumption: Replace a singular part of βγ(θ) by
a smoother part so that q is integrable in θ-variable.

• Hard sphere, hard, Maxwellian and soft potential

γ = 1 hard sphere, 0 < γ < 1 hard potential
γ = 0 Maxwellian molecule, −3 < γ < 0 soft potential.
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Symmetry of Q(F ,F )

• Using the property of collision map,∫
Q(F ,F )ϕ(ξ)dξ

=

∫∫∫
(F ′F ′∗ − FF∗)ϕ|(ξ∗ − ξ) · ω|dωdξ∗dξ

=

∫∫∫
(F ′F ′∗ − FF∗)ϕ∗|(ξ∗ − ξ) · ω|dωdξ∗dξ

=

∫∫∫
(F ′F ′∗ − FF∗)

ϕ+ ϕ∗
2
|(ξ∗ − ξ) · ω|dωdξ∗dξ.
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• Theorem: Suppose that F ∈ L1(R3) satisfies

F (ξ) = O(|ξ|−n) as |ξ| → ∞ for all n ≥ 0.

Then, for any test function ϕ = ϕ(ξ) with at most polynomial
growth at infinity

ϕ(ξ) = O(1 + |ξ|m) as |ξ| → ∞ for some m ≥ 0,

we have∫
Q(F ,F )ϕ(ξ)dξ

=

∫∫∫
(F ′F ′∗ − FF∗)

ϕ+ ϕ∗ − ϕ′ − ϕ′∗
4

|(ξ∗ − ξ) · ω|dωdξ∗dξ.
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Maxwellian

Suppose that 0 < F ∈ L1(R3) is rapidly decaying and such that
ln F has polynomial growth at infinity.

• Boltzmann’s inequality∫
Q(F ,F )ln F (ξ)dξ

= −1
4

∫∫∫
(F ′F ′∗ − FF∗) ln

(F ′F ′∗
FF∗

)
|(ξ∗ − ξ) · ω|dωdξ∗dξ

≤ 0.

Note that∫
Q(F ,F )ϕ(ξ)dξ = 0 ⇐⇒ ln F ′ + ln F ′∗ = ln F + ln F∗

⇐⇒ ln F is a collision invariant.
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By previous theorem

lnϕ is a collision invariant
⇐⇒ lnϕ = a + b · ξ + c|ξ|2, a, c ∈ R, b ∈ R3

⇐⇒ ϕ(x , ξ, t) =
ρ(x , t)

(2πRθ)
3
2

e−
|ξ−u(x,t)|2

2Rθ(x,t) ,

where ρ, θ > 0 and u ∈ R3.
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• Defintion: (Maxwellian)

F is a Maxwellian ⇐⇒ F = M[ρ,u,θ](ξ) =
ρ(x , t)

(2πRθ)
3
2

e−
|ξ−u(x,t)|2

2Rθ(x,t) ,

cf. Local and global (absolute) Maxwellians.

• Theorem: Boltzmann

The space of collision invariants is 5-dimensional and spanned
by

ϕ0 = 1, ϕi = ξi , i = 1,2,3, ϕ4 := |ξ|2.
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H-Theorem (irreversibility)

We set
H :=

∫
F log Fdξ, H =

∫
ξF log Fdξ.

Then, H satisfies

∂tH+∇x ·H =
1

4Kn

∫∫
log

FF∗
F ′F ′∗

(
F ′F ′∗−FF∗

)
q(ξ∗−ξ, ω)dωdξ∗dξ ≤ 0.

The Boltzmann equation is a dissipative equation

cf. physical entropy = -H.
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Note that equality holds if and only if F is in thermo-equilibrium

Q(F ,F ) = 0

if and onl if F belong to the 5-dimensional thermo-equilbrium
manifold

{F : F = M[ρ,u,θ], ρ > 0, θ > 0,u ∈ R3}.

The H-Theorem says that there is a tendency for the solution F
of the Boltzmann equation to approach the equilibrium
manifold.
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Conservation laws

Recall the identity∫
Q(F ,F )ϕ(ξ)dξ

=

∫∫∫
(F ′F ′∗ − FF∗)

ϕ+ ϕ∗ − ϕ′ − ϕ′∗
4

|(ξ∗ − ξ) · ω|dωdξ∗dξ.

We substitute ϕ(ξ) = 1, ξ, |ξ|2 into the above relation and
obtain

∫  1
ξ
|ξ|2
2

Q(F ,F )dξ = 0.
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• Local conservation laws

Integrate the Boltzmann equation times ϕi , i = 0, ,4, we get

∫  1
ξ
|ξ|2
2

 [∂tF + ξ · ∇xF ]dξ =

∫  1
ξ
|ξ|2
2

Q(F ,F )dξ

= 0.
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Macroscopic observables

For a given kinetic density F = F (x , ξ, t), we set

ρ(x , t) :=

∫
Fdξ local mass density

(ρu)(x , t) :=

∫
ξFdξ local momentum density

(ρE)(x , t) :=

∫
|ξ|2

2
Fdξ local energy density

(ρe)(x , t) :=

∫
|ξ − u|2

2
Fdξ local internal energy density

ρE = ρe +
1
2
ρ|u|2.
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We can further simply by introducing stress tensor and heat flux

pij :=

∫
(ξi − ui)(ξj − uj)Fdξ, p =

1
3

trP,

qi :=

∫
(ξi − ui)|ξ − u|2Fdξ.

For a local maxwellian F = M,

pij = 0, i 6= j , qi = 0, i = 1,2,3.
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∫  1
ξ
|ξ|2
2

 [∂tF + ξ · ∇xF ]dξ = 0.

⇐⇒

• Conservation laws (Parts of moment system)

∂tρ+∇x · (ρu) = 0, mass,
∂t (ρu) +∇x · (ρu ⊗ u + P) = 0, momentum,
∂t (ρE) +∇x · (ρuE + Pu + q) = 0 energy.

These are 5 scalar equations for the 14 macroscopic variables:
1 for density, 3 for gas velocity u, 1 for total energy E = e + |u|2

2 ,
6 for stress tensor P, and 3 for heat flux q. underdetermined
system.
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In classical fluid dynamics the conservation laws is closed
under some constitutive relations for a stress tensor P and heat
flux q to close the local conservation laws.

• (Compressible Euler equations): For a monatomic gas,

pE
ij = pδij , p = ρRθ =

2
3
ρe, qE = 0.

∂tρ+
3∑

i=1

∂xi (ρu) = 0,

∂t (ρuj) +
3∑

i=1

∂xi

(
ρuiuj +

2
3
ρe
)

= 0, j = 1,2,3,

∂t

(
ρ
|u|2

2
+ ρe

)
+

3∑
i=1

∂xi

[
ρui

( |u|2
2

+
5
3

e
)]

= 0.

5 equations and 5 unknown ρ,u, θ
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• (Compressible Navier-Stokes equations):

� Newton’s law and Fourier’s law

pNS
ij = pδij − µ

(
∂xj ui + ∂xi uj −

2
3

3∑
k=1

∂xk ukδij

)
− µB

3∑
k=1

∂xk ukδij ,

qNS = −κ∇xθ,

where

µ : viscosity, µB : bulk viscosity, κ : heat condcutivity.
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The pressure p, the internal energy e together with the
viscosity coefficients µ, µB and the heat conductivity k are
functions of ρ and θ.

From the kinetic theory, we have

2ρe = 3p, µB = 0.
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Symmetry

Recall the Boltzmann equation:

∂tF + ξ · ∇xF =

∫
bbr3×S2

|(ξ∗ − ξ) · ω|(F ′F ′∗ − FF∗)dωdξ∗.

Let F = F (x , ξ, t) be a solution. Then, we have

• Translation invariance

F (x , ξ, t − t̄), F (x − x̄ , ξ, t) : solutions.

• Rotation invariance

F (Ux ,Uξ, t) : solution, UU∗ = U∗U = I.
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Consider a dilation

F̃ = λαF , x̃ = λβx , ξ̃ = λγξ, t̃ = λβt .

Note that

F̃ (x̃ , ξ̃, t̃) = λαF (x , ξ, t) = λαF (λ−β x̃ , λ−γ ξ̃, λ−δ t̃).

Then, by direct calculation, we have

∂t̃ F̃ = λα−δ∂tF ,
ξ̃ · ∇x̃ F̃ = λα+γ−βξ · ∇xF ,

Q(F̃ , F̃ ) =

∫
bbr3×S2

|(ξ̃∗ − ξ̃) · ω|(F̃ ′F̃ ′∗ − F̃ F̃∗)dωd ξ̃∗

= λ2α+4γQ(F ,F ).
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This leads two relations for four unknowns.

−δ = γ − β = α + 4γ.

Thus, we have a 2-parameter family of dilations.
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Summary

• The Boltzmann equation describes the dynamics of dilute
gases

• The Boltzmann equation is a dissipative system
• The compressible Euler equations can be formally derived

from the Boltzmann equation.
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