Lecture 2: The Boltzmann equation

Seung Yeal Ha

Department of Mathematical Sciences
Seoul National University

Feb. 10, 2015
Outline

The Boltzmann equation

Collision transformation

Collision operator

Maxwellian

Conservation laws

Symmetry of the Boltzmann equation
Today, I will talk about

Inner beauty of the Boltzmann equation

Outer beauty attracts, but inner beauty captivates.

Kate Angell
The Boltzmann equation

- **Velocity Distribution function:**

\[F = F(x, \xi, t) \]: velocity distribution function (number density function) of monatomic particles (e.g. Ar, He, ...).

\[F(x, \xi, t) \Delta x \Delta \xi \approx \text{number of particles inside } \Delta x \Delta \xi. \]
• **Particle trajectory** (bi-characteristics) in phase space:

\[
\begin{align*}
\frac{dx}{dt} & = \xi, \\
\frac{d\xi}{dt} & = E(x, t), \\
x(0) & = x, \\
\xi(0) & = \xi.
\end{align*}
\]

In the absence of collisions between particles, \(F = F(x, \xi, t) \) is preserved (conserved) along the particle path:

\[
\frac{dF}{dt} = \frac{d}{dt} F(x(t), \xi(t), t) \\
= \partial_t F + \dot{x} \cdot \nabla_x F + \dot{\xi} \cdot \nabla_\xi F \bigg|_{(x(t), \xi(t), t)} \\
= \partial_t F + \xi \cdot \nabla_x F \\
= 0.
\]

This is a transport equation in phase space.
However, when there are collisions,

\[
\frac{dF}{dt} = \text{Jump in } F \text{ due to collisions} \bigg|_{\text{collision time}}.
\]

We denote \(Q(F, F) \) by the jump in \(F \) and call it "collision operator".
• Assumptions in the derivation of the collision operator.

1. Due to the rarefaction, multiple collisions other than binary are neglected.
2. Collisions are **LOCAL** and **INSTANTANEOUS**

\[Q(F, F) \text{ operates only in the velocity variable } \xi \text{ in } F. \]
The Boltzmann equation (1872)

\[\partial_t F + \xi \cdot \nabla_x F = \frac{1}{Kn} Q(F, F), \]

Rate of change in \(F \) along particle trajectory

where

\[Q(F, F)(x, \xi, t) = \int_{R^3 \times S^2} q(\xi - \xi^*, \omega) (F' F' - FF^*) d\omega d\xi^*. \]

Difficulty of the Boltzmann equation comes from the collision operator
• Between collisions (free transport)

\[
\frac{dx_i}{dt} = \xi_i, \quad \frac{d\xi_i}{dt} = 0, \quad i = 1, \ldots, N.
\]

• The linear transport equation:

\[
\partial_t F + \xi \cdot \nabla_x F = 0, \quad x, \xi \in \mathbb{R}^3, \quad t > 0,
\]

\[
F(x, \xi, 0) = F_0(x, \xi).
\]

Then, it is easy to see that

\[
F(x, \xi, t) = F_0(x - t\xi, \xi).
\]

Next, we study the collision operator \(Q(F, F) \).
Collisions between particle-particle

For a monatomic gas e.g. Ar, H, i.e., Molecule = atom

- Micro-reversibility $(\xi, \xi_*) \iff (\xi', \xi'_*)$:

\[
1 + 1 = 1 + 1, \quad \xi + \xi_* = \xi' + \xi'_*, \quad \frac{|\xi|^2}{2} + \frac{|\xi_*|^2}{2} = \frac{|\xi'|^2}{2} + \frac{|\xi'_*|^2}{2}.
\]

cf. Hard sphere, reversible, translational energy, elastic collisions
Recall the **elastic collision relation**:

\[\xi + \xi^* = \xi' + \xi'_* , \quad |\xi|^2 + |\xi^*|^2 = |\xi'|^2 + |\xi'_*|^2. \]

Note that we have *six* unknown \((\xi', \xi'_*)\) and *four* scalar equations. Therefore, for a given initial velocities \((\xi, \xi^*)\), we will have a *two parameter family of final velocities*.
Theorem: (Collision transformation)

\[
\begin{align*}
\xi' &= \xi - ((\xi - \xi_*) \cdot \omega) \omega, \\
\xi_*' &= \xi_* + ((\xi - \xi_*) \cdot \omega) \omega, \quad \omega \in S^2.
\end{align*}
\]
Proof. We introduce a unit vector $\omega \in S^2$ having the direction of the change in velocity of the first molecule.

$$\xi' - \xi = A\omega, \quad A: \text{scalar}.$$

Note that ω is well-defined unless $\xi' - \xi = 0$.

Then, conservation of momentum yields

$$\xi'_* - \xi_* = -A\omega.$$

On the other hand, conservation of energy implies

$$A = \omega \cdot (\xi_* - \xi).$$
• **Theorem:**

Collision transformation is an isometry from \mathbb{R}^6 to \mathbb{R}^6,
i.e., $\frac{\partial (\xi', \xi_*)}{\partial (\xi, \xi_*)} = 1$.

◊ Properties of collision transformation

1. Interchange of pre collisional velocities ξ and ξ_* produces
 an interchange of post collisional velocities ξ' and ξ'_*.

2. Angles are unchanged by the collision, i.e.,

 $$|(\xi'_* - \xi'_) \cdot \omega| = |(\xi_* - \xi) \cdot \omega|.$$
Definition: Collision invariant

\(\varphi = \varphi(\xi, \xi^*) \) is a collision invariant if and only if it is invariant under the collision transformation (map), i.e.,

\[
\varphi(\xi', \xi'^*) = \varphi(\xi, \xi^*), \quad \xi, \xi^* \in \mathbb{R}^3.
\]

Remark. 1. Every collision invariant \(\varphi \) is a function of \(\xi + \xi^* \) and \(|\xi|^2 + |\xi^*|^2 \), i.e.,

\[
\varphi(\xi, \xi^*) = \Phi(\xi + \xi^*, |\xi|^2 + |\xi^*|^2).
\]

2. Summational invariant = a collision invariant which splits into a sum of functions \(\xi \) and \(\xi^* \):

\[
\varphi(\xi, \xi^*) = \psi(\xi) + \psi(\xi^*).\]
- **Theorem**: Boltzmann, Carlemann, Grad

Suppose that a C^2 function φ satisfies

$$\varphi(\xi) + \varphi(\xi^*) = \varphi(\xi') + \varphi(\xi^*').$$

Then,

$$\varphi(\xi) = a + b \cdot \xi + c|\xi|^2.$$

Every summational invariant is spanned by $1, \xi_1, \xi_2, \xi_3, |\xi|^2$.

By physical argument in scattering process, the collision kernel q can be shown to be a function of $\xi_* - \xi$ and ω.

- **Boltzmann’s collision integral:**

$$Q(F, F)(x, \xi, t) = \iiint_{\mathbb{R}^3 \times S^2} q(\xi_* - \xi, \omega) \left(F' F_* - FF_*\right) d\xi_*.$$

where

$$F_* = F(\xi_*), \quad F' = F(\xi').$$

For a gas of hard spheres with radius r,

$$q(\xi_* - \xi, \omega) = r^2 |(\xi_* - \xi) \cdot \omega|.$$
For an inversely proportional intermolecular potential, i.e.,

\[F \approx \frac{1}{r^s}, \]

the collision kernel \(q \) takes the form

\[q(\xi_* - \xi, \omega) = C|\xi_* - \xi|^\gamma \beta_\gamma(\theta), \quad -3 < \gamma \leq 1. \]

- Grad cut-off assumption: Replace a singular part of \(\beta_\gamma(\theta) \) by a smoother part so that \(q \) is integrable in \(\theta \)-variable.

- Hard sphere, hard, Maxwellian and soft potential

\[
\begin{align*}
\gamma &= 1 \quad \text{hard sphere,} \quad 0 < \gamma < 1 \quad \text{hard potential} \\
\gamma &= 0 \quad \text{Maxwellian molecule,} \quad -3 < \gamma < 0 \quad \text{soft potential.}
\end{align*}
\]
Symmetry of $Q(F, F)$

- Using the property of collision map,

\[
\int Q(F, F) \varphi(\xi) d\xi \\
= \int \int \int (F' F_* - F F_*) \varphi |(\xi - \xi) \cdot \omega| d\omega d\xi_* d\xi \\
= \int \int \int (F' F_* - F F_*) \varphi_* |(\xi_* - \xi) \cdot \omega| d\omega d\xi_* d\xi \\
= \int \int \int (F' F_* - F F_*) \frac{\varphi + \varphi_*}{2} |(\xi_* - \xi) \cdot \omega| d\omega d\xi_* d\xi.
\]
• **Theorem:** Suppose that $F \in L^1(R^3)$ satisfies

$$F(\xi) = O(|\xi|^{-n}) \quad \text{as} \quad |\xi| \to \infty \quad \text{for all} \quad n \geq 0.$$

Then, for any test function $\varphi = \varphi(\xi)$ with at most polynomial growth at infinity

$$\varphi(\xi) = O(1 + |\xi|^m) \quad \text{as} \quad |\xi| \to \infty \quad \text{for some} \quad m \geq 0,$$

we have

$$\int Q(F, F)\varphi(\xi)d\xi$$

$$= \int\int\int (F' F_* - FF_*) \frac{\varphi + \varphi_* - \varphi' - \varphi_*'}{4} |(\xi_* - \xi) \cdot \omega| d\omega d\xi_* d\xi.$$
Suppose that $0 < F \in L^1(R^3)$ is rapidly decaying and such that
$\ln F$ has polynomial growth at infinity.

- **Boltzmann’s inequality**

$$\int Q(F, F) \ln F(\xi) d\xi$$
$$= -\frac{1}{4} \iiint (F' F' - FF_*) \ln \left(\frac{F' F'}{FF_*} \right) |(\xi_* - \xi) \cdot \omega| d\omega d\xi_* d\xi \leq 0.$$

Note that

$$\int Q(F, F) \varphi(\xi) d\xi = 0 \iff \ln F' + \ln F_* = \ln F + \ln F_*$$
$$\iff \ln F \text{ is a collision invariant.}$$
By previous theorem

\[
\ln \varphi \text{ is a collision invariant} \quad \iff \quad \ln \varphi = a + b \cdot \xi + c|\xi|^2, \quad a, c \in \mathbb{R}, \quad b \in \mathbb{R}^3
\]

\[
\iff \quad \varphi(x, \xi, t) = \frac{\rho(x, t)}{(2\pi R\theta)^{3/2}} e^{-\frac{|\xi - u(x, t)|^2}{2R\theta(x, t)}},
\]

where \(\rho, \theta > 0 \) and \(u \in \mathbb{R}^3 \).
• **Definition:** (Maxwellian)

\[F \text{ is a Maxwellian } \iff F = M_{[\rho,u,\theta]}(\xi) = \frac{\rho(x,t)}{(2\pi R\theta)^{\frac{3}{2}}} e^{-\frac{|\xi - u(x,t)|^2}{2R\theta(x,t)}} \]

cf. Local and global (absolute) Maxwellians.

• **Theorem:** Boltzmann

The space of collision invariants is 5-dimensional and spanned by

\[\varphi_0 = 1, \quad \varphi_i = \xi_i, \quad i = 1, 2, 3, \quad \varphi_4 := |\xi|^2. \]
H-Theorem (irreversibility)

We set

\[H := \int F \log F d\xi, \quad \mathcal{H} = \int \xi F \log F d\xi. \]

Then, \(H \) satisfies

\[
\partial_t H + \nabla_x \cdot \mathcal{H} = \frac{1}{4Kn} \iint \log \frac{FF^*}{F'F_*'} \left(F'F_*' - FF_*' \right) q(\xi_* - \xi, \omega) d\omega d\xi_1 d\xi_2 \leq 0.
\]

The Boltzmann equation is a dissipative equation

cf. physical entropy = -H.
Note that equality holds if and only if F is in thermo-equilibrium

$$Q(F, F) = 0$$

if and only if F belong to the 5-dimensional thermo-equilibrium manifold

$$\{F : F = M[ρ, u, θ], \quad ρ > 0, θ > 0, u ∈ R^3\}.$$

The H-Theorem says that there is a tendency for the solution F of the Boltzmann equation to approach the equilibrium manifold.
Recall the identity

\[
\int Q(F, F)\varphi(\xi) d\xi = \int\int\int (F' F'_{\ast} - FF_{\ast}) \frac{\varphi + \varphi_{\ast} - \varphi' - \varphi'_{\ast}}{4} |(\xi_{\ast} - \xi) \cdot \omega| d\omega d\xi_{\ast} d\xi.
\]

We substitute \(\varphi(\xi) = 1, \xi, |\xi|^2\) into the above relation and obtain

\[
\int \begin{pmatrix}
1 \\
\xi \\
|\xi|^2 \\
\frac{2}{2}
\end{pmatrix} Q(F, F) d\xi = 0.
\]
Local conservation laws

Integrate the Boltzmann equation times φ_i, $i = 0, 4$, we get

$$\int \left(\frac{1}{|\xi|^2} \right) \left[\partial_t F + \xi \cdot \nabla_x F \right] d\xi = \int \left(\frac{1}{|\xi|^2} \right) Q(F, F) d\xi$$

$$= 0.$$
Macroscopic observables

For a given kinetic density $F = F(x, \xi, t)$, we set

$$\rho(x, t) := \int F d\xi \quad \text{local mass density}$$

$$\rho u(x, t) := \int \xi F d\xi \quad \text{local momentum density}$$

$$\rho E(x, t) := \int \frac{|\xi|^2}{2} F d\xi \quad \text{local energy density}$$

$$\rho e(x, t) := \int \frac{|\xi - u|^2}{2} F d\xi \quad \text{local internal energy density}$$

$$\rho E = \rho e + \frac{1}{2} \rho |u|^2.$$
We can further simply by introducing stress tensor and heat flux

\[p_{ij} := \int (\xi_i - u_i)(\xi_j - u_j) F d\xi, \quad p = \frac{1}{3} \text{tr} P, \]
\[q_i := \int (\xi_i - u_i) |\xi - u|^2 F d\xi. \]

For a local maxwellian \(F = M \),

\[p_{ij} = 0, \quad i \neq j, \quad q_i = 0, \quad i = 1, 2, 3. \]
\[
\int \left(\frac{1}{\xi} \right) \left[\frac{\xi}{|\xi|^2} \right] \left[\partial_t F + \xi \cdot \nabla_x F \right] d\xi = 0.
\]

\[\iff\]

- **Conservation laws** (Parts of moment system)

\[
\begin{align*}
\partial_t \rho + \nabla_x \cdot (\rho u) &= 0, \quad \text{mass}, \\
\partial_t (\rho u) + \nabla_x \cdot (\rho u \otimes u + P) &= 0, \quad \text{momentum}, \\
\partial_t (\rho E) + \nabla_x \cdot (\rho u E + Pu + q) &= 0 \quad \text{energy}.
\end{align*}
\]

These are 5 scalar equations for the 14 macroscopic variables:
1 for density, 3 for gas velocity \(u\), 1 for total energy \(E = e + \frac{|u|^2}{2}\), 6 for stress tensor \(P\), and 3 for heat flux \(q\). underdetermined system.
In classical fluid dynamics the conservation laws is closed under some constitutive relations for a stress tensor P and heat flux q to close the local conservation laws.

• (Compressible Euler equations): For a monatomic gas,

$$p_{ij}^E = p \delta_{ij}, \quad p = \rho R \theta = \frac{2}{3} \rho e, \quad q^E = 0.$$

$$\partial_t \rho + \sum_{i=1}^{3} \partial_{x_i} (\rho u) = 0,$$

$$\partial_t (\rho u_j) + \sum_{i=1}^{3} \partial_{x_i} \left(\rho u_i u_j + \frac{2}{3} \rho e \right) = 0, \quad j = 1, 2, 3,$$

$$\partial_t \left(\rho \frac{|u|^2}{2} + \rho e \right) + \sum_{i=1}^{3} \partial_{x_i} \left[\rho u_i \left(\frac{|u|^2}{2} + \frac{5}{3} e \right) \right] = 0.$$

5 equations and 5 unknown ρ, u, θ
• (Compressible Navier-Stokes equations):

\[p_{ij}^{NS} = p\delta_{ij} - \mu \left(\partial_{x_j} u_i + \partial_{x_i} u_j - \frac{2}{3} \sum_{k=1}^{3} \partial_{x_k} u^k \delta_{ij} \right) \]

\[- \mu_B \sum_{k=1}^{3} \partial_{x_k} u^k \delta_{ij}, \]

\[q^{NS} = -\kappa \nabla_x \theta, \]

where

\(\mu \): viscosity, \(\mu_B \): bulk viscosity, \(\kappa \): heat conductivity.
The pressure p, the internal energy e together with the viscosity coefficients μ, μ_B and the heat conductivity k are functions of ρ and θ.

From the kinetic theory, we have

$$2\rho e = 3\rho, \quad \mu_B = 0.$$
Symmetry

Recall the Boltzmann equation:

$$\partial_t F + \xi \cdot \nabla_x F = \int_{bbr^3 \times S^2} |(\xi_* - \xi) \cdot \omega|(F'F_* - FF_*) d\omega d\xi_*.$$

Let $F = F(x, \xi, t)$ be a solution. Then, we have

• **Translation invariance**

 $$F(x, \xi, t - \bar{t}), \quad F(x - \bar{x}, \xi, t) : \text{solutions.}$$

• **Rotation invariance**

 $$F(Ux, U\xi, t) : \text{solution}, \quad UU^* = U^*U = I.$$
Consider a dilation

\[\tilde{F} = \lambda^\alpha F, \quad \tilde{x} = \lambda^\beta x, \quad \tilde{\xi} = \lambda^\gamma \xi, \quad \tilde{t} = \lambda^\beta t. \]

Note that

\[\tilde{F}(\tilde{x}, \tilde{\xi}, \tilde{t}) = \lambda^\alpha F(x, \xi, t) = \lambda^\alpha F(\lambda^{-\beta} \tilde{x}, \lambda^{-\gamma} \tilde{\xi}, \lambda^{-\delta} \tilde{t}). \]

Then, by direct calculation, we have

\[\partial_t \tilde{F} = \lambda^{\alpha-\delta} \partial_t F, \]
\[\tilde{\xi} \cdot \nabla \tilde{x} \tilde{F} = \lambda^{\alpha+\gamma-\beta} \xi \cdot \nabla x F, \]
\[Q(\tilde{F}, \tilde{F}) = \int_{bbr^3 \times S^2} |(\tilde{\xi}_* - \tilde{\xi}) \cdot \omega| (\tilde{F}' \tilde{F}'_* - \tilde{F} \tilde{F}_*) d\omega d\tilde{\xi}_* \]
\[= \lambda^{2\alpha+4\gamma} Q(F, F). \]
This leads two relations for four unknowns.

\[-\delta = \gamma - \beta = \alpha + 4\gamma.\]

Thus, we have a 2-parameter family of dilations.
Summary

- The Boltzmann equation describes the dynamics of dilute gases
- The Boltzmann equation is a dissipative system
- The compressible Euler equations can be formally derived from the Boltzmann equation.