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Lecture 3

The Boltzmann equation and Vlasov equation
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A singular perturbation problem

Note that small Knudsen limit Kn→ 0 to the Boltzmann
equation corresponds to a singular perturbation problem:

Kn
(
∂tF + ξ · ∇xF

)
= Q(F ,F ).

Thus, formally, as long as ∂tF + ξ · ∇xF is uniformly bounded in
the zero Knudsen limit, we may argue that

Q(F ,F )→ 0, as Kn→ 0

In other words, as Kn→ 0,

F → M in suitable sense.

Thus, zero Knudsen limit, we may hope that the Boltzmann
equation behaves like the Euler equations.
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Question: Can this singular perturbation limit be justified
rigorously ?
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The compressible Euler limit
Consider the Boltzmann equation ε := Kn:

ε
(
∂tF + ξ · ∇xF

)
= Q(F ,F ).

• The Hilbert expansion D. Hilbert, Begrndung der kinetischen Gastheorie,
Math. Ann. 72 (1912), 562-577.

Expand F as a formal power series of ε = Kn:

F =
∞∑

n=0

εnFn = F0 + εF1 + ε2F2 + · · · .

� L.H.S.:

ε(tF0 + ξ · ∇xF0) + ε2(tF1 + ξ · ∇xF1) + ε3(tF2 + ξ · ∇xF2) + · · ·

� R.H.S.:

Q(F0,F0) + 2εQ(F1,F0)
+ε2(2Q(F2,F0) + Q(F1,F1)) + · · ·
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Compare various orders in ε:

O(1) : Q(F0,F0) = 0 =⇒ F0 = M.
ε : 2Q(F1,F0) = ∂tF0 + ξ · ∇xF0 =: S0,
ε2 : 2Q(F2,F0) = ∂tF1 + ξ · ∇xF1 −Q(F1,F1) =: S1,

For the solvability of LM(F1) := 2Q(F1,F0) = S0, by the
Fredholm alternative,

S0 is orthogonal to the kernel of L∗M

But KerL∗M is spanned by the collision invariants,

〈S0, ψα〉 = 0, α = 0,1, · · · ,4. : Euler equations.
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• Some relevant references.

1. Russel E. Caflisch: The fluid dynamic limit of the nonlinear
Boltzmann equation. CPAM. 33 (1980), no. 5, 651Ð666.

2. Shih-Hsien Yu: Hydrodynamic limits with Shock Waves of
the Boltzmann Equation. CPAM 58 (2005), 409-443.

3. Laure Saint-Raymond: A mathematical PDE perspective
on the Chapman-Enskog expansion. Bulletin of AMS, 51
(2014), 247-275.

cf. 1. The compressible Navier-Stokes limit: The Chapman-Enskog
expansion
2. The incompressible Euler limit: M → 0.
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The Vlasov equation
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If you first hear of the Vlasov equation, you might ask the
following questions:

• QA 1: What is the Vlasov equation ?
• QA 2: When do we use the Vlasov equation ?
• QA 3: What are the relations with other fluid equations ?
• · · ·
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What is the Vlasov equation ?

The Vlasov equation = collisionless Boltzmann equation

Physical situation: Consider an ensemble of particles moving in
a mean-field force fields (e.g. a many-body particle systems in
mean-field setting)

Let F = F (x , ξ, t) be a one-particle distribution function of
particles and we assume that the collisions between particles
are secondary, in contrast collisions (interactions) between
particle and fields are important.

d
dt

F (x(t), ξ(t), t) = ∂tF + ẋ(t) · ∇xF + ξ̇(t) · ∇ξF = 0,

or equivalently

∂tF +
ξ

m
· ∇xF + E(x , t) · ∇ξF = 0.
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Let V = V (x , y) be the pairwise potential between particles at
position x and y , respectively. In this case, the self-consistent
force field

E(x , t) = −∇x

∫∫
R3×R3

V (x , y)F (y , ξ∗, t)d∗dy

= −∇x

∫
R3

V (x , y)ρ(y , t)dy .

e.g. 1. Electrostatic potential generated by a charge q:

V (x , y) =
q

4π
1

|x − y |
: repulsive

2. Gravitational potential generated by a mass m:

V (x , y) = − Gm
|x − y |

: attractive
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Thus, the self-consistent Vlasov equation reads as

∂tF +
ξ

m
· ∇xF + E(x , t) · ∇ξF = 0,

E(x , t) = −∇x

∫
R3

V (x , y)ρ(y , t)dy .
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When do we use the Vlasov equation ?

In plasma physics, the equation was first suggested for
description of plasma by Anatoly Vlasov in 1938 " A. A. Vlasov
(1938). "On Vibration Properties of Electron Gas". J. Exp.
Theor. Phys. (in Russian) 8 (3): 291"
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• Plasma physics

Plasma = the fourth fundamental state of gases, completely
ionized gases.

e.g., gas inside light bulb.

Ice =⇒ water =⇒ vapor =⇒ plasma.



TWO EXPANSIONS HYDRODYNAMIC LIMITS THE VLASOV EQUATION THE INCOMPRESSIBLE EULER LIMIT

The Vlasov-Maxwell system

Vlasov equations for electrons and ions + Maxwell equationsfor
electric and magnetic force fields.

• Dynamic variables

Fi = Fi (x , ξ, t), Fe = Fe(x , ξ, t) : distribution functions for ion and electron,
E = E(x , t), B = B(x , t) : electric and magentic fields density.

We set a relativistic velocity related to momentum ξ:

vα(ξ) =
ξ√

m2
α + |ξ|2/c2

, α = i ,e.

where c is the speed of light. Then it is easy to see that

|vα(ξ)| < c.
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• The Vlasov-Maxwell system

∂tFα + vα · ∇xFα + eα
(

E +
vα
c
× B

)
· ∇ξFα = 0,

∂tE = c∇× B − j , ∇ · E = ρ,
∂tB = −c∇× E , ∇ · B = 0,

where ρ and j are the charge and current densities:

ρ = C(d)

∫ ∑
α

eαFαdξ, charge density

j = C(d)

∫ ∑
α

vαeαFαdξ currrent density.

cf. Small data and global existence:



TWO EXPANSIONS HYDRODYNAMIC LIMITS THE VLASOV EQUATION THE INCOMPRESSIBLE EULER LIMIT

A single species plamsa

• Electron gun (laser) and plamsa sheath

Only one species of charged particles, say electrons or ions.
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The Vlasov-Poisson system

Recall a Vlasov-Maxwell system for a single species.

∂tF + v(ξ) · ∇xF + e
(

E +
v(ξ)

c
× B

)
· ∇ξF = 0,

1
c
∂tE = ∇× B − j

c
, ∇ · E = ρ,

1
c
∂tB = −∇× E , ∇ · B = 0.

Consider a regime where

|v(ξ)| � c, ∂tB ≈ 0, ∂xi Bi ≈ 0.
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i.e., letting c →∞ and B = 0. Then, the Vlasov-Maxwell
system becomes

∂tF + v(ξ) · ∇xF + eE · ∇ξF = 0,
∇ · E = ρ, ∇× E = 0.

We set
E = ∇xϕ

and obtain the Vlasov-Poisson system:

∂tF + ξ · ∇xF +∇xϕ · ∇ξF = 0, x , ξ ∈ R3, t ∈ R,

∆ϕ = ρ, ρ =

∫
eFdξ.

cf. Rigorous justification: Degond, Ukai ’80 in finite-time interval
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• Astrophysics:

A galaxy is a gravitationally bound system consisting of stars,
stellar remnants, an interstellar medium of gas and dust, and

dark matter

cf. Size of galaxy: From 104 to 1014, observable universe: ≥ 1014-galaxies
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James Hopwood Jeans: On the theory of star-streaming and
the structure of the universe, Monthly Notices of the Royal
Astronomical Society, 76 (1915), 70 -84.

cf. Reinhard Rein
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Inner beauties of the V-P system
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Inner beauties of the V-P system

• The V-P system is a Hamiltonian system.

Recall that the Vlasov-Poisson (V-P) system reads as

∂tF +
ξ

m
· ∇xF −∇xϕ · ∇ξF = 0, x , ξ ∈ R3, t ∈ R,

∆ϕ = ρ, ρ =

∫
Fdξ.

Then, the V-P system is equivalent to the ODE system:

dx
dt

=
ξ

m
,

dξ
dt

= E = −∇xϕ.
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Define a particle path [x(s) = x(s; x , v , t), ξ(s) = ξ(s; x , v , t)]:

dx(s)

ds
=
ξ(s)

m
,

dξ(s)

ds
= E(x(s), ξ(s), s),

(x(t), ξ(t)) = (x , ξ).

Then, along the particle path, we have

F (x(s), ξ(s), s) = F0(x , ξ), s > 0, x , ξ ∈ R3.

Note that (x , ξ)→ (x(s), ξ(s)) is a measure preserving.
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We claim: The above ODE system is a Hamilton’s ODEs
We set

H(x , ξ, t) :=
1

2m
|ξ|2 +

∫∫
R3×R3

V (x , y)f (y , ξ, t)dξdy

=
1

2m
|ξ|2 +

∫
R3

V (x , y)ρF (y , t)dy︸ ︷︷ ︸
=:ϕ

,

where potential energy is mean-field.

� Hamilton’s ODEs

dx
dt

=
∂H
∂ξ

=
ξ

m
,

dξ
dt

= −∂H
∂x

= −∇xϕ.
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• Conservation laws.

Define a particle path [x(s) = x(s; x , v , t), ξ(s) = ξ(s; x , v , t)]:

dx(s)

ds
=
ξ(s)

m
,

dξ(s)

ds
= E(x(s), ξ(s), s),

(x(t), ξ(t)) = (x , ξ).

Then, along the particle path, we have

F (x(s), ξ(s), s) = F0(x , ξ), s > 0, x , ξ ∈ Rd .

Note that (x , ξ)→ (x(s), ξ(s)) is measure preserving.

• Conservation of Lp-norm

||F (t)||Lp = ||F0||Lp , t ≥ 0.
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Balanced laws
Consider a linear Vlasov equation:

∂tF + ξ · ∇xF −∇xϕ · ∇ξF = 0.

• Conservtion of mass

As before, we define

ρ(x , t) :=

∫
Fdξ, j(x , t) = (ρu)(x , t) =

∫
ξFdξ.

Using the relation

ξ · ∇xF = ∇x · (ξF ), ∇xϕ · ∇ξF = ∇ξ · (∇xϕF ).

We integrate the Vlasov equation with respect to ξ-variable to
obtain the continuity equation (local conservation of mass):

∂tρ+∇x · (ρu) = 0, i.e., ∂tρ+∇x · j = 0.
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• Balance of momentum

We multiply ξ to the Vlasov equation

∂t (ξF ) +∇x ·
(ξ ⊗ ξ

m
F
)

+∇ξ · (ξ ⊗∇xϕF ) = −∇xϕF

and integrate the resulting relation with respect to ξ to obtain

∂t (ρu) +∇x · (ρu ⊗ u + P) = −ρ∇xϕ.
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• Conservation of total energy

Define an energy

E :=

∫
|ξ|2

2
Fdξdx .

We multiply |ξ|
2

2 to the equation to obtain

∂t

( |ξ|2
2

F
)

+∇x ·
(
ξ
|ξ|2

2
F
)

+∇ξ ·
(
−∇xϕ

|ξ|2

2
F
)

+∇x · (ϕξF )− ϕ∇x · (ξF ) = 0.

We integrate the above relation with dξdx to get

d
dt

∫∫
|ξ|2

2
Fdξdx −

∫∫
ϕ∇x · (ξF )dξdx = 0.
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Note that

−
∫∫

ϕ∇x · (ξF )dξdx = −
∫
ϕ∇x · jdx =

∫
ϕ∂tρdx

=

∫∫
V (|x − y |)ρ(y , t)∂tρ(x , t)dydx

=
1
2

∫∫
V (|x − y |)∂t (ρ(x , t)ρ(y , t))dydx

=
d
dt

1
2

∫∫
V (|x − y |)ρ(x , t)ρ(y , t)dydx

=
d
dt

1
2

∫
ϕ(x , t)ρ(x , t)dx .

Finally, we have the conservation of total energy:

d
dt

[ ∫∫ |ξ|2
2

Fdξdx +
1
2

∫
ϕ(x , t)ρ(x , t)dx

]
= 0.

or equivalently,

d
dt

[ ∫∫ |ξ|2
2

Fdξdx +
1
2

∫
|E(x , t)|2dx

]
= 0.
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• Conservation of entropy

Note that

∂t (F ln F ) = (∂tF )(1+ ln F ) = −∇x ·(ξF ln F )+∇ξ ·(∇xϕF ln F ).

We integrate the above relation with respect to dξdx to get

d
dt

∫∫
F ln Fdξdx = 0.

The V-P system is a conservative system.
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Incompressible Euler limit

• Quasi-neutral limit Let F = F (x , ξ, t) be a kinetic density for
electron, and assume that the ion density is constant, say 1, i.e.,

∂tF + ξ · ∇xF −∇xϕ · ∇ξF = 0,

ε∆ϕ = 1−
∫

Fdξ, ε : Debye length.

By previous argument, we have local and global balanced laws.

∂t

∫
Fdξ +∇ ·

∫
ξFdξ = 0,

∂t

∫
ξFdξ +∇ ·

∫
ξ ⊗ ξFdξ +∇ϕ

= ε∇ · (∇ϕ⊗∇ϕ)− ε

2
∇(|∇ϕ|2),

d
dt

[ ∫∫ 1
2
|ξ|2Fdξdx +

∫
ε

2
|∇ϕ|2dx

]
= 0.

cf. E. Grenier, Y. Brenier
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Quasi-neutral limit

We take ε→ 0 (quasi-neutral limit)∫
Fdξ = 1.

We again recall

ρ(x , t) =

∫
Fdξ = 1, J(x , t) =

∫
ξFdξ.

and take an ansatz (for perfectly cold electrons)

F (x , ξ, t) = δ(ξ − J(x , t)).

to get the incompressible Euler equation:

∇ · J = 0, ∂tJ +∇ · J ⊗ J +∇ϕ = 0.
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Summary of Lecture 3

1. The Vlasov-Poisson system is a conservative system
(mass, energy)

2. The compressible, incompressible fluid equations can be
formally derived from the Boltzmann and Vlasov-Poisson
systems.
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THE BIOLOGICAL 
PHYSICIST 

 
This issue of THE BIOLOGICAL PHYSICIST

brings you a feature interview with Cornell University’s 
Steven H. Strogatz, well-known nonlinear dynamicist, 
applied mathematician, and author, as well as one of the 
originators of the idea of small world networks.  

On another note, our readers may have noticed a paper 
copy of a condensed version of recent issues of THE 
BIOLOGICAL PHYSICIST landing in their mailboxes 
recently. Since some members of the Division of Biological 
Physics are “off line”, we are now providing all members of 
the Division with occasional paper editions of the most 
important features and announcements from recent issues. 
We welcome your feedback on this expansion of THE 
BIOLOGICAL PHYSICIST into print. And your editor 
asks you, if you do not plan to archive the print edition, to 
please recycle!    

         -- SB 
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• Bahar: What advice would you have for a scientist just
beginning a career in interdisciplinary science ?

• Strogatz: First, ....
Second, don’t be afraid to work in a completely unfamiliar
subject. You can come up to speed amazingly quickly if
you have a collaborator in that field, and if you hang
around his or her lab for a few weeks. And keep in mind
that you bring many advantages as an outsider. You have
a different set of tools. You will ask unusual questions. And
you don’t know know what’s impossible.
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