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Abstract

This work derives the basic balance laws of Codazzi, Ricci, and Gauss for the

isometric embedding of an n-dimensional Riemannian manifold into m =
n

2
(n + 1)

dimensional Euclidean space. It is shown how the balance laws can be placed in

quasi-linear symmetric form and weak solutions for the linearized problem can be

obtained from the Lax-Milgram theorem.

0 Introduction

While the classical isometric embedding for 2-dimensional Riemannian manifold into 3-

dimensional Euclidean space is quite well studied and discussed eloquently in the recent

book of Han and Hong [1], the more general case of embedding n-dimensional Riemannian

manifolds into
n

2
(n+ 1) Euclidean space has a comparatively small literature. The main

results in the case of n = 3 have been given in the papers of Bryant, Griffiths and Yang

[2], Nakamura and Maeda [3, 4], Goodman and Yang [5], and most recently Poole [6] and

the related and more general case m ≥ 3 by Han and Klum [8]. All of these papers rely

on a linearization of the full non-linear system

∂iy · ∂jy = gij

for the embedding problem where gij is the given metric of Riemannian manifold and

y is the desired embedding. Applied analysts more familiar with continuum mechanics

and quasi-linear balance laws might find a presentation of the embedding problem in a

symmetric quasi-linear form more appealing since in that context there is an extensive

literature originating with Friedrichs [7] and others which is nicely presented by Han and

Hong [1]. However since as far as I know no-one has shown that the isometric embedding

problem (Mn, g) → R
µ, m =

n

2
(n + 1), the case of critical Janet dimension m, can be

written in symmetric quasi-linear form, I thought it worth developing in a self-contained

set of lecture notes. These notes are presented here.

The table of contents is as follows.
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1 The basic isometric embedding equations

Let (X, g) be an n-dimensional Riemannian manifold. Roughly Riemann was thinking

about extending the idea of a surface in Euclidean space without the necessity of having

an underlying Euclidean space. If indeed the manifold (X, g) can be embedded globally

into R
m (or locally in which case the word “immersion” is used) then we can write a

coordinate patch (y1, . . . , ym) on the manifold.
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Figure 1: (M2, g) embedded in R
3

Example (M2, g) embedded into R
3

n = 2, m = 3

Distances on the manifold are computed according to the metric g

∂iy · ∂jy = gij , 1 ≤ i, j ≤ n, (1.1)

where ∂i =
∂

∂xi

, xi are the local coordinates.

The two dimensional Riemannian manifold when viewed as a surface in R
3 is very in-

structive.
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Figure 2: y1 = x1, y
2 = x2,y

3 = f(x1, x2)

In introductory courses we write the distance along the surface (by the Pythagorean

Theorem) as

ds2 = (dx1)
2 + (dx2)

2 + (df)2

= (dx1)
2 + (dx2)

2 +

(
∂f

∂x1
dx1 +

∂f

∂x2
dx2

)2

(ds)2 =

(

1 +

(
∂f

∂x1

)2
)

(dx1)
2 + 2

∂f

∂x1

∂f

∂x2

(dx)(dx2) +

(

1 +

(
∂f

∂x2

)2
)

(dx2)
2

and hence our metric along the surface is

1 +

(
∂f

∂x1

)2

= g11,

2
∂f

∂x1

∂f

∂x2
= 2g12, (g12 = g21) (1.2)

1 +

(
∂f

∂x2

)2

= g22 .

If we ask the inverse problem: given the metric can we find the surface we see (1.2) is a

system of nonlinear partial differential equations. More generally this is reflected when

we write (1.1):

∂iy · ∂jy = gij.

Since 1 ≤ i, j ≤ 2 in the case of (M2, g) embedded into R
3

g =






g11 g12

. . .

g21 g22






we have an equation for each component of g. By symmetry in this case we have 3

equations for the three unknowns y1, y2, y3. Thus we have a determined system. On
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the other hand embedding (M2, g) into R
2 we would have just (y1, y2) and we would have

3 equations in 2 unknowns (overdetermined case) and embedding (M2, g) into R
4 we

would have (y1, . . . , y4) and we would have 3 equations in 4 unknowns (undetermined

case).

Since for an n-dimensional Riemannian manifold we have

g =

n
︷ ︸︸ ︷





g11 · · · g1n

. . .

gn1 · · · gnn






}

n

and an n×n symmetric matrix has
1

2
n(n+1) entries on and above the diagonal in general

the isometric embedding problem (recovering the “surface” from the metric) is

undetermined m >
n

2
(n+ 1),

determined m =
n

2
(n+ 1),

overdetermined m <
n

2
(n+ 1),

where m will be the number of unknowns (y1, . . . , ym) and
n

2
(n + 1) will be the number

of equations. The number
n

2
(n+ 1)

is of course crucial and is called the Janet dimension.

Now for the over determined case we would not expect too many solutions and math-

ematicians have pursued the problem of uniqueness. On the other hand for the over

determined case we have the flexibility of more unknowns than equations and it is here

that we see in some sense that Riemann’s concept of an abstraction of surfaces becomes

superfluous. Specifically for m sufficiently large (Mn, g) embeds globally and smoothly

into R
m and (Mn, g) looks exactly like a surface:

Theorem 1. (John F Nash, Jr [9])

A Ck, 3 ≤ k ≤ ∞, Riemannian manifold (Mn, g) has a Ck embedding into R
m (globally)

if

m = n(3n+ 11)/2 compact case

= n(n+ 1)(3n+ 11)/2 non-compact case.

Nash’s theorem has been improved over the intervening years but the main point here is

that global embedding results are always for the undetermined system.
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For the determined case which conceptually are more familiar in applied mathemat-

ics where the number of equations equals the number of unknowns global embedding

(smoothly) is in general not possible.

I quote the paper of S.-T. Yau [10]

“Section 3.13 Isometric embedding. Given a metric tensor on a manifold, the

problem of isometric embedding is equivalent to find enough functions f1, . . . , fN so that

the metric can be written as Σ(dfi)
2. Much work was accomplished for two dimensional

surfaces as was mentioned in section 2.1.2. Isometric embedding for the general dimension

was solved in the famous work of J. Nash. Nash used his famous implicit function theorem

which depends on various smoothing operators to gain derivatives. In a remarkable work

Gunther was able to avoid the Nash procedure. He used only standard Hölder regularity

estimate for the Laplacian to reproduce the Nash isometric embedding with the same

regularity result. In his book Gromov was able to lower the codimension of the work of

Nash. He called his method the h-principle.

When the dimension of the manifold is n, the expected dimension of the Euclidean space

for the manifold to be isometrically embedded is
n(n+ 1)

2
. It is important to understand

manifolds isometrically embedded into Euclidean space with this optimal dimension. Only

in such a dimension does it make sense to talk about rigidity questions. It remains a

major open problem whether one can find a nontrivial family of isometric

embeddings of a closed manifold into Euclidean space with an optimal dimen-

sion... .

Chern told me that he and H. Lewy studied local isometric embedding of a three manifold

into six dimensional Euclidean space, but they didn’t write any manuscript on it. The

major work in this subject was done by E. Berger, Bryant, Griffiths and Yang. They

showed that a generic three dimensional embedding system is strictly hyperbolic, and

the generic four dimensional system is of real principle type. Local existence is true

for a generic metric using a hyperbolic operator and the Nash-Moser implicit function

theorem... .

Comment. The theory of isometric embedding is a classical subject, but our knowledge

is still rather limited, especially in dimension greater than three. Many difficult problems

are related to nonlinear mixed type equations or hyperbolic differential systems,

over a closed manifold.”
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Some preliminary lemmas

Lemma 1.1. Let X = X ′ × I ⊂ R
n where X ′ ⊂ R

n−1 be an open domain and I a

connected open interval. Given smooth functions f : X × R
m → R

m and A0 : X ′ → R
m

and t ∈ I, there exists a unique solution A : X → R
m to

∂nA = f(x′, xn, A)

A|xn=t = A0(x
′) for x′ ∈ X ′,

where ∂n := ∂xn
.

Proof. This is just the standard existence-uniqueness theorem for ordinary differential

equations. Here xn is “time” the independent variable, t is the initial time where the data

A0(x
′) is specified, x′ are parameters for which the data A0(x

′) and prescribed f(x′, xn, A)

may depend, and A is the unknown function (dependent variable) that we wish to find.

Lemma 1.2. Let X ⊂ R
n be an open contractable domain and let fi : X × R

m → R
m

satisfy
∂fa

i

∂xj
+
∂fa

i

∂Ab
f b

j =
∂fa

j

∂xi
+
∂fa

j

∂Ab
f b

i

for each (x,A) ∈ X × R
m, where the Einstein summation convention is used here and

forever after unless otherwise specified. Then given x0 ∈ X and A0 ∈ R
m, there exists a

unique solution A : X → R
m to

∂iA = fi(x,A) A(x0) = A0

where ∂i = ∂xi
and x = (x1, . . . , xn).

Proof. Existence and uniqueness will follow from Lemma 1.1 as long as the system of

ordinary differential equations is consistent:

∂i∂jA = ∂i fj(x,A),

∂j∂iA = ∂j fi(x,A),

hence we need

∂ifj(x,A) = ∂j fi(x,A)

∂fj

∂xi
+
∂fj

∂Ab

∂Ab

∂xi
=

∂fi

∂xj
+
∂fi

∂Ab

∂Ab

∂xj
, i.e.

∂fj

∂xi
+
∂fj

∂Ab
f b

i =
∂fi

∂xj
+
∂fi

∂Ab
f b

j

and this was the hypothesis of the lemma.
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Remark 1. Lemma 2 is a nonlinear version of the Poincaré Lemma but here the exis-

tence, uniqueness theorem for ordinary differential equations is used instead of the fun-

damental theorem of calculus. In the standard Poincaré Lemma fi does not depend on A

and the statement
∂fa

i

∂xj
=
∂fa

j

∂xi

implies the existence of a “potential” A with

∂Aa

∂xi
= fa

i ,

and of course
∂

∂xj

Aa

∂xi
=

∂Aa

∂xi ∂xj
.

Riemannian structure in local coordinates

Let (X, g) be an n-dimensional Riemannian manifold. The covariant derivative allows

us to differentiate along the manifold

∇k ϕ = ∂k ϕ

for a scalar ϕ,

∇k ϕj = ∂x ϕj − Γℓ
jk ϕℓ

for a vector ϕℓ,

∇k ϕij = ∂k ϕij − Γℓ
ik ϕℓj − Γℓ

jk ϕiℓ

for a second order tensor ϕij .

The Christoffel symbols are calculated from the metric g

Γk
ij =

1

2
gkℓ(∂igij + ∂j giℓ − ∂ℓ gij).

Here gkℓ (upper indices) is the inverse matrix of gij (lower indices).

The Riemann convecture tensor is calculated as

Rℓ
ijk = ∂jΓℓ

ki − ∂kΓ
ℓ
ji + Γℓ

jpΓ
p
ki − Γℓ

kpΓ
p
ji .

As usual we have

Γk
ij = Γk

ji,

∂kgij = gipΓ
p
kj + gjpΓ

p
ik,

∇i∂j = Γℓ
ij∂ℓ,

Rℓ
ijk∂ℓ = −∇j∇k∂i + ∇k∇j∂i
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We denote

Rijkℓ = giq R
q
jkℓ

so that

Rijkℓ = giq(+∂kΓ
q
pj − ∂ℓΓ

q
kj + Γq

kpΓ
p
ℓj − Γq

ℓpΓ
p
kj).

Identities:

Skew symmetry: Rijkℓ = −Rjikℓ = −Rijℓk

Interchange symmetry: Rijkℓ = Rkℓij

First Bianchi

Rijkℓ +Rikℓj +Riℓjk = 0

Second Bianchi

Rijkℓ;µ +Rijℓµ;k +Rijµk;ℓ = 0

where “ ; ” denotes the covariant derivative.

Special case : n = 2

Rijkℓ = K(gikgℓi − giℓgjk)

where K is the Gauss curvature.

Since from the definition of Rℓ
ijk, Rijkℓ is made up of first derivatives of the Christoffel

symbols and hence second derivatives of the metric g we see the Gauss curvature is given

in terms of and first and second derivatives of the metric. This is Gauss’s theorem

egregium.

Covariant derivatives do not commute.

ϕi;jk − ϕi;kj = Rℓ
ijkϕℓ, i.e.

∇k∇jϕi −∇j∇kϕi = Rℓ
ijkϕℓ.

This was noted earlier.

Also

Rℓ
ijk = −∇jΓ

ℓ
ik + ∇kΓ

ℓ
ij

since

∇jΓ
ℓ
ik = ∂jΓ

ℓ
ik − Γp

ijΓ
ℓ
pk − Γp

kjΓ
ℓ
ip ,

∇kΓ
ℓ
ij = ∂kΓ

ℓ
ij − Γp

ikΓ
ℓ
pj − Γp

jkΓ
ℓ
ip
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and when we subtract the last terms cancel so that

−∇jΓ
ℓ
ik + ∇kΓ

ℓ
ij =

−∂jΓ
ℓ
ik + ∂kΓ

ℓ
ij + Γp

ijΓ
ℓ
pk − Γp

ikΓ
ℓ
pj

= Rℓ
ijk

Isometric immersion

We use “ . ” to denote the Canonical Euclidean metric in a coordinate patch (y1, . , ym)

in R. An R
m− valued function y : (X, g) → (Rm, .) is called an isometric immersion

of X into R
m. If the induced metric is the same as the original, that is, written locally

using coordinates (x1, .., xn)

∂iy.∂jy = gij for each 1 ≤ i, j ≤ n.

where “ . ” stands for the canonical metric in R
m.

In other words:

Pythagoras gives us

ds2 = ∂iy.∂jy dxidxj

if we knew y.

Riemann gives us

ds2 = gijdxidxj

as the general distance formula for abstract manifold (X, g). Can we equate the two

expressions and find the realization of the manifold?

x1

x2

1 2(y ,y ,y )3

∂1y ∂2y
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∂1y, ∂2y are tangent to a surface in the case n = 2, m = 3. They span the tangent space

at the point y(x)
(

= y1(x1, x2), y2(x1, x2), y3(x1, x2)
)

. In this case the unit normal vector

is defined (up to a sign) by the usual vector cross product

N =
∂1y × ∂2y

|∂1y × ∂2y|
.

In higher dimensions we have no cross product but the same ideas makes sense.

For (X, g) we have the coordinate patch y = (y1, ., ym), we form the collection of tangents
{

∂1y(x), ..., ∂ny(x)
}

which span the tangent space to the manifold defines as TxX
︸︷︷︸

n dimensional

. Let NxX
︸ ︷︷ ︸

m−n dimensional

denote m − n dimensional subspace orthogonal and complementary to TxX. Fix an

orthogonal basis
{

Nn+1(x), . . . , Nm(x)
}

of NxX for each x, and assume they depend

smoothly on x.

The second derivative of an immersion

For each x, the vectors {∂1y(x), ., ∂ny(x), Nn+1(x), ..., Nm(x)} comprise a basis of R
m.

Therefore, for each pair of indices 1 ≤ i, j ≤ n the vector ∂2
ijy(x) can be written as a linear

combination of these vectors. In other words there exist unique coefficients Γk
ij, 1 ≤ k ≤ n

and Hµ
ij, n+ 1 ≤ µ ≤ m such that

∂2
ijy(x) = Γk

ij(x) ∂ky(x) + Hµ
ij(x) Nµ(x) (1.3)

or component-wise

∂2
ijy

p(x) = Γk
ij(x) ∂ky

p(x) +Hµ
ij(x) N

p
µ(x),

p = 1, . . . , m,

or

∇i ∂jy(x) = Hµ
ij(x) Nµ(x)

Remark. Notice that the coefficients in the tangent direction for the second derivatives

∂2
ijy(x) are precisely the Christoffel symbols defined earlier. Let us see why this is true.

We ask

∂2
ijy(x) ? Γk

ij(x) ∂ky(x) + Hµ
ij(x) Nµ(x).

Take the “ . ” product of each side with the tangent vector ∂qy(x).
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∂2
ijy(x) · ∂qy(x) ? Γk

ij ∂ky(x) · ∂qy(x)

since ∂qy(x) ·Nµ(x) = 0.

Since y is an immersion

∂ky(x) · ∂qy(x) = gkq(x)

and our question is

∂2
ijy(x) · ∂qy(x) ? Γk

ij(x) gkq(x).

But

∂i(∂jy . ∂qy) = ∂2
ijy . ∂qy + ∂jy . ∂iqy, or ∂i gjq = ∂2

ij . ∂qy + ∂jy . ∂iqy.

So our question may be written as

∂igjq ? Γk
ij(x) gkq(x) + Γk

iq gkj(x).

Now plug in the definition of the Christoffel symbol:

∂igjq ? gkq(x)
1

2
gkℓ(x) (∂igℓj + ∂jgiℓ − ∂ℓgij)

+ gkℓ(x)
1

2
gkℓ(x) (∂igℓq + ∂qgiℓ − ∂ℓgiq)

=
1

2
δℓ
q (∂igℓj + ∂jgiℓ − ∂ℓgij)

+
1

2
δℓ
j (∂igℓq + ∂qgiℓ − ∂ℓgiq)

where δℓ
q is the Kronecker delta (δj

ℓ = 1, j = ℓ, δj
ℓ = 0, j 6= ℓ).

So finally our question is

∂igjq ?
1

2
(∂igqj + ∂jgiq − ∂qgij)

+
1

2
(∂igjq + ∂qgij − ∂jgiq)

and the indicated cancellations show the answer to our question is “yes”.

In addition from (1.2) we see

∂2
ijy(x) ·Nν(x) = Hµ

ij(x)Nµ(x) · Nν(x)
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and since {Nm+1
µ (x), . . . , δm

µ } is an orthonormal set

Nµ(x) ·Nν(x) = δµν

we have

Hµ
ij(x) = ∂2

ijy(x) ·Nµ(x)

The tensors Hµ
ij(x), µ = n+ 1, . . . , m are called the second fundamental form. (g is the

first fundamental form). They are symmetric in (i, j).

Just as we decomposed the first derivative of the tangent vectors to obtain (2.2) we now

decompose the first derivatives of the normals Nµ(x).

Lemma 1.3. There exist functions Aν
µi = −Aµ

νi such that

∂iNµ = −gjk Hµ
ik ∂jy + Aν

µiNν (1.4)

or component − wise

∂iN
p
µ = −gjk Hµ

ik ∂jy
p + Aν

µiN
p
ν , p = 1, . . . , m.

Proof. First, since as before we know the set of tangents and normals span R
m, we

decompose

∂iNµ = Bj
iµ ∂jy + Aν

µiNν . (1.5)

Since

0 = ∂i(Nµ ·Nν) = Nν · ∂iNµ +Nµ · ∂iNν

we see (1.3) implies

Nν · ∂iNµ = Aα
µiNα ·Nν ,

Nµ · ∂iNν = Aα
νiNα ·Nµ;

Nν · ∂iNµ = Aα
µiδαν = Aν

µi

Nµ · ∂iNν = Aα
νiδαµ = Aµ

νi

and so addition yields
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Aν
µi + Aµ

νi = 0.

On the other hand since

Nµ · ∂ky = 0

we have

0 = gjk∂i(Nµ · ∂ky)

= gjk(∂iNµ · ∂ky +Nµ · ∂2
iky)

= gjk(∂iNµ · ∂ky +Hµ
ik) by (1.4)

= gjk(∂ky · ∂pyB
B
iµ +Hµ

ik) by (1.5)

= gjk(gkpB
γ
iµ +Hµ

ik) by (1.1)

= Bj
iµ + gjkHµ

ik, (since gjkgkp = δj
p).

Hence

Bj
iµ = −gjkHµ

ik.

Substitution of this relation into (1.4), together with the equality Aν
µi + Aµ

νi = 0, proves

the lemma.

Commutation of second partials of the normal vectors

Differentiate (1.4) one more time.

∂iNµ = −gjk Hµ
ik ∂jy + Aν

µiNν

∂j(∂iNµ) = −∂j(g
qp Hµ

ip ∂qy) + ∂j(A
ν
µiNν)

= −∂j(g
qp Hµ

ip) ∂qy

−gqp Hµ
ip ∂jqy) + ∂j(A

ν
µiNν)

= −∂j(g
qpHµ

ip)∂qy

−gqpHµ
ip(Γ

k
jq∂ky +Hν

jqNν)

−(∂jA
ν
µi)Nν +

Aν
µi(−g

pqHν
pj∂qy + Aℓ

νjNℓ

(where we have used both (1.3) and (1.4)).

Now let us collect terms in the tangential and normal directions to write
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∂j(∂iNµ) = −
(

∂j(g
pqHµ

ip) + gpkΓq
jkH

µ
ip + gpqAν

µiH
ν
pj

)

∂qy

+
(

∂jA
ν
µi − gpqHµ

ipH
ν
jq + Aℓ

µiA
ν
ℓj

)

Nν.

But since

∂j(∂iNµ) = ∂i(∂jNµ)

we can read off the equations from the tangent direction (Codazzi equations)

∂j(g
pqHµ

ip) + gpkΓq
jkH

µ
ip + gpqAν

µiH
ν
pj = ∂i(g

pqHµ
jp) + gpkΓq

ikH
µ
jp + gpqAν

µjH
ν
pi,

and from the normal direction (Ricci equations)

∂jA
ν
µi − gpqHµ

ipH
ν
jq + Aℓ

µiA
ν
ℓj = ∂iA

ν
µj − gpqHµ

jpH
ν
iq + Aℓ

µjA
ν
ℓi.

We can rewrite the Codazzi equations in a more traditional form via simple computation:

gpqgpr = δq
r , so

∂j(g
pqgpr) = 0 and

∂j(p
pq)gpr + gpq∂j(gpr) = 0,

∂j(g
pq)gprg

rs + grsgpq∂j(gpr) = 0,

∂j(g
pq)δs

p + grsgpq∂j(gpr) = 0,

∂j(g
sq) = −grsgpq∂j(∂py · ∂ry),

(by (1.1))

∂j(g
sq) = −grsgpq(∂jpy.∂ry + ∂py.∂jry)

= −grsgpq(Γk
jp∂ky.∂ry + ∂py · Γ

k
jr∂ky)

(by (1.3)). Thus

∂j(g
sq) = −grsgpq(Γk

jpgrk + Γk
jrgkp)

= −gpq(Γk
jpδ

s
k) − grs(Γk

jrδ
q
k)

= −gpq(Γs
jp) − grs(Γq

jr);

i.e.

∂j(g
sq) = −gpqΓs

jp − grsΓq
jr.
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Let us use this relation in the above Codazzi equations via the rewriting

∂j(g
pq) = −gsqΓp

js − grpΓq
jr ,

∂i(g
pq) = −gsqΓp

is − grpΓq
ir .

Hence from the Codazzi equations we have

gpq∂jH
µ
ip + (−gsqΓp

js − grpΓq
jr) H

µ
ip + gpkΓq

jkH
µ
ip + gpqAν

µiH
ν
pj =

gpq∂iH
µ
jp + (−gsqΓp

is − grpΓq
ir) H

µ
jp + gpkΓq

ikH
µ
jp + gpqAν

µjH
ν
pi

Apply gqα to both sides

δp
α∂jH

µ
ip + (−δs

αΓp
js − gqαg

rpΓq
jr) H

µ
ip + gqαg

pkΓq
jkH

µ
ip + δp

αA
ν
µiH

ν
pj =

δp
α∂iH

µ
jp + (−δs

αΓp
is − gqαg

rpΓq
ir) H

µ
jp + gqag

pkΓq
ikH

µ
jk + δp

αA
ν
µjH

ν
pi

and hence

∂jH
µ
iα + (−Γp

jαH
µ
ip) − gqαg

rp Γq
jrH

µ
ip + gqαgpk Γq

jkH
µ
ip + Aν

µiH
ν
αj =

∂iH
µ
jα + (−Γp

iαH
µ
jp) − gqαg

rp Γq
irH

µ
jp + gqαgpk Γq

ikH
µ
jk + Aν

µjH
ν
α,

∂jH
µ
iα − Γp

jαH
µ
ip + Aν

µiH
ν
αj = ∂iH

µ
jα − Γp

iαH
µ
jp + Aν

µjH
ν
αi.

Now substract Γp
ijH

ν
αp from both sides of the equation to see the usual form of Codazzi

equations

∂jH
µ
iα − Γp

jαH
µ
ip − Γp

ijH
µ
αp + Aν

µiH
ν
αj = ∂iH

µ
jα − Γp

iαH
µ
jp − Γp

ijH
µ
αp + Aν

µjH
ν
αi.

Also since

∇jH
µ
iα = ∂jH

µ
iα − Γp

ijH
µ
pα − Γp

αjH
µ
ip,

∇iH
µ
jα = ∂iH

µ
jα − Γp

jiH
µ
pα − Γp

αiH
µ
jp,

the symmetry of the Christoffel symbols and Hµ
ij yields the Codazzi equations as

∇jH
µ
iα − ∇i · H

µ
jα + Aν

µi
Hν

αj
− Aν

µj
Hν

αi
= 0
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A simple but important remark

Recall equation (1.4).

∂iNµ = −gjk Hµ
ik ∂jy + Aν

µiNν .

In the case of a hypersurface m = n + 1 and there is only one normal since n + 1 ≤ ν ≤

m = n+ 1, i.e. Nn+1. But Nn+1 is a unit vector so that

Nn+1 ·Nn+1 = 1

and

∂iNn+1 ·Nn+1 = 0

Thus (1.4) says

∂iNn+1 = −gpq Hn+1
ip ∂qy + An+1

(n+1)iNn+1

0 = Nn+1 · ∂iNn+1 = An+1
(n+1)i

and the An+1
(n+1)i = 0. Of course this is the same as applying the skew symmetry of Aν

µi in

µ, ν.

Conclusion: In the case of hypersurfaces the Codazzi system simplifies to

∇jH
µ
iα −∇iH

µ
jα = 0.

But if we are interested in the determined case for hypersurfaces

m = n(
n

2
+ 1) and m = n+ 1,

hence n+ 1 =
n

2
(n+ 1) i.e., n = 2, m = 3 which is the classical case of (M2, g) embedded

into R
3.

The Gauss and Codazzi equations

We now return to equation (1.3) and once again commute partial derivatives.

0 = ∂k(∂
2
ijy) − ∂j(∂

2
iky)

= ∂k(Γ
ℓ
ij∂ℓy +Hµ

ijNµ)

−∂j(Γ
ℓ
ik∂ℓy +Hµ

ikNµ)

= (∂kΓ
ℓ
ij − ∂jΓ

ℓ
ik)∂ℓy + Γℓ

ij ∂kℓy − Γℓ
ik

︸ ︷︷ ︸

use (1.3)

∂jℓy

+(∂kH
µ
ij − ∂jH

µ
ik)Nµ

+Hµ
ij ∂knµ
︸︷︷︸

(use 1.4)

−Hµ
ik ∂jnµ
︸︷︷︸

(use 1.4)
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= (∂kΓ
ℓ
ij − ∂jΓ

ℓ
ik)∂ℓy

+Γℓ
ij(Γ

p
kℓ∂py +Hµ

kℓNµ)

−Γℓ
ik(Γ

p
jℓ∂py +Hµ

jℓNµ)

+(∂kH
µ
ij − ∂jH

µ
ik)Nµ

+ Hµ
ij(−g

ℓpHµ
kp∂ℓy + Aν

µkNν)

− Hµ
ik(−g

ℓpHµ
jp∂ℓy + Aν

µjNν)

Again associate the above expression into tangential and normal contributions to see

0 =
[
∂kΓ

ℓ
ij − ∂jΓ

ℓ
ik + Γp

ijΓ
ℓ
kp − Γp

ikΓ
ℓ
jp

−gℓp(Hij ·Hkp −Hik ·Hjp)
]
∂ℓy

+
[
Γℓ

ijH
µ
kℓ − Γℓ

ikH
µ
ji + ∂ℓH

µ
ij − ∂jH

µ
ik

+Hν
ijA

µ
νk −Hν

ikA
µ
νj

]
Nµ

which implies via the normal component

∂kH
µ
ij − ∂jH

µ
ik + Γℓ

ijH
µ
kℓ − Γℓ

ikH
µ
jℓ

+Hν
ijA

µ
νk −Hν

ikA
µ
νj = 0

which with Aµ
νk = −Aν

µk gives

∂kH
µ
ij − ∂jH

µ
ik + Γℓ

ijH
µ
klℓ − Γℓ

ikH
µ
jℓ

+Hν
ijA

ν
µℓ −Hν

ikA
ν
µj = 0

which give the Codazzi equations we have derived earlier.

From the tangential component we have

∂kΓ
ℓ
ij − ∂jΓ

ℓ
ik + Γp

ijΓ
ℓ
kp − Γp

ikΓ
ℓ
jp − gℓp(Hij ·Hkp −Hik ·Hjp) = 0.

But recall from the definition of Riemann curvature tensor

∂kΓ
ℓ
ij − ∂jΓ

ℓ
ik + Γp

ijΓ
ℓ
kp − Γp

ikΓ
ℓ
jp = −Rℓ

ijk

and hence
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gℓp(−Rpijk −Hij ·Hkp +Hik ·Hjp) = 0

HijHpk −HikHjp = −Rpijk = Ripjk

or

Hij ·Hpk −Hik ·Hjp = Ripjk

This is the Gauss relation.

We summarise below: for (Mn, g) → (Rm, ·).

A necessary condition for the existence of an isometric embedding is there exist functions

Hµ
ij = Hµ

ji, A
ν
µi = −Aµ

νi, 1 ≤ i, j ≤ n, n+ 1 ≤ µ, ν ≤ m such that

m∑

µ=n+1

Hµ
ikH

µ
jℓ −Hµ

iℓH
µ
jk = Rijkℓ (1.6)

(GAUSS)

∂kH
µ
ij + Aµ

νpH
ν
ij − Γp

kiH
µ
pj − Γp

kjH
µ
ip =

∂jH
µ
ℓk + Aµ

νjH
ν
ik − Γp

jiH
µ
pk − Γp

jkH
µ
ip (1.7)

(CODAZZI)

∂iA
ν
µj − ∂jA

ν
µi + Aν

ηiA
η
µj

−Aν
ηjA

η
µi = gpq(Hµ

ipH
ν
jq −Hµ

jpH
ν
iq) (1.8)

(RICCI)

The Ricci system (1.8) can be put in covariant form by adding and subtracting

Γq
ijA

ν
µq.

Then we have

∇iA
ν
µj −∇jA

ν
µi + Aν

ηiA
ν
µj

−Aν
ηjA

η
µi = (1.7′)

gpa(Hµ
ipH

ν
jq −Hµ

jpH
ν
iq).

(RICCI)

Notice the Aν
µj are vectors j = 1, 2, 3 and the ν, µ are only accounting for dimensions

n + 1 ≤ µ, ν ≤ m.
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Reconstructing an isometric embedding

Theorem 2. Given a connected and simply connected Riemannian manifold X with co-

ordinates (x1, . . . , xn) and Riemannian metric g(= gij) if there exist functions Hµ
ij = Hµ

ji

and

Aν
µi = −Aµ

νi 1 ≤ ℓ, j ≤ m, n + 1 ≤ µ, ν ≤ m

such that (1.5), (1.6), (1.7) hold then there exist functions Nn+1, . . . , Nm : X → R
m and

a function y : X → R
m such that the following hold:

Nµ ·Nν = δµν , (1.9)

Nµ · ∂iy = 0, (1.10)

∂i y · ∂jy = gij (1.11)

and

∂2
ijy = Γk

ij∂ky +Hµ
ijNµ, (1.12)

∂iNµ = −gjkHµ
ik∂jy + Aν

µiNν . (1.13)

The theorem shows that the conditions on Hµ
ij , A

ν
µℓ and (1.8)–(1.10) are both necessary

and sufficient for embedding (Mn, g) → (Rm, ·), X = Mn.

Sketch of proof. Let {en, . . . em} denote the standard basis of R
m. Fix a point x0 ∈ X.

Set {∂1y(x0) . . . , ∂n(x0), Nn+1(x0), . . . , Nm(x0)} so that (1.8)–(1.10) hold. One possibility

is to set Nµ(x0) = eµ and y(x0) = 0 and choose {∂1y(x0) . . . , ∂ny(x0)} to be a linear

combination of {e1, . . . , en} such that (1.10) holds at x0.

[If gij(x0) = δij then

Nµ(x0) = eµ, n+ 1 ≤ µ ≤ m,

∂1y(x0) = e1, . . . , ∂ny(x0) = en

works.]

If we denote φi = ∂1y then (1.11)–(1.12) form a total differential system for the unknown

R
m valued function {φ1, . . . , φn, Nn+1, . . . , Nm}. Check by differentiating these equations

that the compatibility conditions obtained by constructing partial derivatives are con-

sequences of the Gauss equations (1.5), Codazzi equations (1.6), Ricci equations (1.7)

and the original equations (1.11), (1.12). Therefore by Lemma 1.2, there exists a unique

solution (the “potential” φi) for extending the initial data specified at x0.

Also the differentials of equations (1.8)–(1.10) are consequences of (1.11)–(1.12). There-

fore they hold not only at x0 but also on all of X.
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Finally (1.11) implies ∂iφj = ∂jφi because the right side is symmetric in i and j. Therefore

by Lemma 1.2 there exists a unique R
m-valued function y on X so that

y(x0) = 0 and ∂iy = φi, 1 ≤ i ≤ n.

Example: (H2, g) → (R3, ·)

(1.6) is H4
ikH

4
jk −H4

iℓH
µ
jk = Rijkℓ,

(1.7) is ∂kH
4
ij − ∂jH

4
ik = Γp

kiH
4
pj + Γp

kjH
4
ip − Γp

jℓH
4
pk − Γp

jkH
4
ip,

Rijkℓ = K(gikgℓj − giℓgjk),

K = Gauss curvature,

1 ≤ i, j ≤ 2.

H4 =

[

H4
11 H4

12

H4
21 H4

22

]

H4
12 = H4

21

R1212 = K(g11g22 − g2
12) = K det g, det g > 0

(1.6) is H4
11H

4
22 −H4

12H
4
12 = K det g. (1.13)

(1.7) is ∂2H
4
11 − ∂1H

4
12 = · · · ,

∂2H
4
12 − ∂1H

4
22 = · · · ,

and we have three equations in three unknowns: H4
11, H

4
12, H

4
22.

Quasi-linear system if we eliminate one of the unknowns via Gauss (1.6).

The Gauss relation becomes a “constitutive relation”.

Example: (H3, g) → (R6, ·)

(1.6) is
∑6

µ=4 H
µ
ikH

µ
jℓ −Hµ

iℓH
4
jk = Rijkℓ (1.14)

Non-zero components of Rijkℓ:

R1212, R1313, R2323, R1223, R1332, R1231
︸ ︷︷ ︸

6 non-zero components
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6 Gauss relations are given by (1.6).

The second fundamentals form is







Hµ
11 Hµ

12 Hµ
13

Hµ
21 Hµ

22 Hµ
23

Hµ
31 Hµ

32 Hµ
33








and the Codazzi equations are just a statement about cross derivatives along rows (or

columns since Hµ
ij is symmetric). There appears to be 3 equations across each row.

Notice however the coupling

∂1H
µ
23 − ∂µ

3H21 = · · ·

∂1H
µ
32 − ∂2H

µ
31 = · · ·

yields upon subtraction

∂2H
µ
31 − ∂3H

µ
21 = · · ·

Thus instead of 9 couplings for each µ, there are only 8. Since µ = 4, 5, 6 we have 24

Codazzi equations. We count equations and unknowns.

Equations: 6 Gauss + 24 Codazzi + 9 Ricci = 39 equations.

Unknowns: 18 Hµ
ij + 9 Aν

µk = 27 unknowns.

Thus even though the problem of embedding (H3, g) → (R6, ·) is determined
(

m =
n(n + 1)

2
; 6 =

3(4)

2

)

using the Gauss, Codazzi, Ricci system it gives more equa-

tions than unknowns.

Of course this means that for the Gauss, Codazzi, Ricci system not all the

equations are independent.

This rather painful counting process was clarified in a sequence of papers by R. Blum

[11, 12, 13] in the 1940’s and 1950’s but an excellent survey is found in the paper of H.F.

Goenner [14].

Here is Blum’s counting result for embedding (Mn, g) → (Rm, ·) as given on p.143 of

Goenner’s paper with some paraphrasing by me.

Theorem 3. If the Gauss equation is satisfied by a set of second fundamental forms of

maximal rank, then (i) for 0 ≤ p = m−n ≤
1

8
n(n−2) all Codazzi and Ricci equations are

consequences of the Gauss equation; (ii) for
1

8
n(n−2) < p = m−n ≤

1

2
n(n−1) a system

of
1

3
n(n2 − 1)

[

p−
1

8
n(n− 2)

]

Codazzi equations are independent. The remainder of the

Codazzi equations and all Ricci equations are a consequence of the independent system

and of the Gauss equations.
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For the case m = 6, n = 3, p = 3 we are in category (ii) of the above theorem:

1

8
3(1) ≤ 3 ≤ 3

and the theorem asserts that

1

3
3(8)

[
24

8
−

3

8

]

= 21

Codazzi equations are independent and all the Ricci equations follow from these inde-

pendent Codazzi equations and the Gauss equations. So our elementary count gave 24

Codazzi equations and Blum’s count gave 21 independent Codazzi equations.

So where is the discrepancy? The answer is that in our elementary counting we did not

use the three equations in Bianchi’s second identity. If we substitute the Gauss

relations into these three equations we have three more equations relating derivatives of the

second fundamental forms and hence only 21 not 24 Codazzi equations are independent.

But even with the above count which says that 21 Codazzi and 6 Gauss suffice we see the

Aν
µℓ (connections on the normal bundle) still enter the Codazzi equations (1.6). So while

we have 21 Codazzi + 6 Gauss = 27 equations and 18 Hµ
ij + 9Aν

µk = 27 unknowns it is

not clear immediately how to prove even a local existence theorem for this system.

For the general case when m =
n

2
(n+ 1), Blum’s theorem case (ii) again applies and we

have p =
1

2
n(n− 1) and there are

1

24
n2(n2 − 1)(3n− 2) independent Codazzi equations

and under the maximal rank conditions the Codazzi and Gauss equations imply the Ricci

equations.

A sketch of the proof of Blum’s theorem when n = 3, m = 6

1. From the Codazzi equations

∇jH
µ
iα −∇iH

µ
ja + Aν

µiH
ν
αj − Aν

µjH
ν
αi = 0

we have in particular

∇1H
µ
23 −∇3H

µ
21 + Aν

µ3H
ν
21 − Aν

µ1H
ν
23 = 0,

∇1H
µ
32 −∇2H

µ
31 + Aν

µ2H
ν
31 − Aν

µ1H
ν
32 = 0. (1.15)

Subtract to see

∇2H
µ
31 −∇3H

µ
21 − Aν

µ2H
ν
31 + Aν

µ3H
ν
21 = 0. (1.16)

Thus the Codazzi relation (1.14) is implied by the first two (1.13). For n = 3, m = 6 this

reduces the number of independent Codazzi relations by 3.

2. We can rewrite the Codazzi equations as

εℓji∇jH
µ
1a − εℓjiA

ν
µiH

ν
αj = 0
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Recall the relation

cofHµ
iℓ = εijkεℓmnH

µ
knH

µ
jm.

Hence

∇ℓ cofHµ
iℓ = εijkεℓmn(∇ℓH

µ
kn)Hµ

jm

+ εijkεℓmnH
µ
kn(∇ℓH

µ
jm)

= 2εijkεℓmnH
µ
jm∇ℓH

µ
kn (no sum on µ) (1.17)

From the Codazzi equations

εℓmn∇ℓH
µ
kn − εℓmnA

ν
µnH

ν
kℓ = 0, (1.18)

εℓmn∇ℓH
µ
jm − εℓmnA

ν
µmH

ν
jℓ = 0 (1.19)

and substitution of these relations into (1.15) yields

∇ℓ(cof Hµ
iℓ) − εijkεℓmnA

ν
µnH

ν
kℓH

µ
jm

− εijkεℓmnA
µ
µmH

ν
jℓH

µ
kn = 0 (no sum on µ).

Interchange m,n and j, k in the above expression to see

∇ℓ(cofHµ
iℓ) − 2εijkεℓmnA

ν
µmH

ν
jℓH

µ
kn = 0, (no sum on µ).

Now sum on µ to find

6∑

µ=4

∇ℓ(cofHµ
iℓ) − 2εijkεℓmn

6∑

µ=4

Aν
µmH

ν
jℓH

µ
kn = 0.

The Gauss equations may be written as

6∑

µ=4

cofHµ
iℓ = Riℓ

where

R =






R2323 R2331 R2312

R2331 R3131 R3112

R2312 R3112 R1212






Thus our equation for divergence of the cofactors becomes for n = 3, m = 6:

∇ℓRiℓ − 2εijkεmnℓ

6∑

µ=4

Aν
µmH

ν
jℓH

µ
kn = 0 i = 1, 2, 3

The first term on the left hand side is zero by the second Bianchi identity, i.e.

∇ℓ(R1ℓ) = 0, ∇ℓ(R2ℓ) = 0, ∇ℓ(R3ℓ) = 0.
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The second term on the left hand side is zero from the skew symmetry of Aν
µk in µ, ν.

Hence we have shown a combination of the Codazzi equations combined with the Gauss

relation gives three trivial relations 0 = 0, and thus we have reduced the number of

independent Codazzi equations by an additional 3.

3. Now write the Codazzi and Ricci equations as

Cµ
kα

def
= εijk∇jH

µ
iα + εijkA

ν
µiH

ν
αj = 0,

Kµ
kµ

def
= εijk∇iA

ν
µj + εijkA

ν
ηiA

η
µj − gpqεijkH

µ
ipH

ν
jq = 0.

Apply ∇k to the Codazzi system

εijk∇k∇jH
µ
iα + εijk(∇kA

ν
µi)H

ν
αj + εijkA

ν
µi(∇kH

ν
αj) = 0

The last term can be rewritten using Codazzi as

εijk∇kH
ν
αj = −εijkA

η
νjH

η
αk.

Thus

εijk∇k∇jH
µ
iα + εijk∇kA

ν
µiH

ν
αj − εijkA

η
νjH

η
αkA

ν
µi = 0

or interchanging i→ j → k → i in the last term

εijk∇k∇jH
µ
iα + εijkH

ν
αj(∇kA

ν
µi −Aη

νkA
η
µi) = 0

Finally use the formula for the commutation εijk∇k∇jH
µ
ia and the Gauss equations and

we recover Hν
αj multiplying the Ricci equations, i.e.

Hν
aj K

ν
iµ = 0

where Kµ
iµ = 0. Since 1 ≤ α, j ≤ 3 this gives 9 equations in the nine unknowns Kν

iµ.

Blum’s rank condition asserts that this system has the unique solution Kν
iµ = 0 and the

Ricci equations are satisfied.

2 Symmetrization of the Codazzi equations

A subset of the Codazzi equations is given by

∇1H
µ
iℓ −∇ℓH

µ
i1 + Aµ

ν1H
ν
iℓ − Aµ

νℓH
ν
i1 = 0. (2.1)

On the other hand the full set of Codazzi equations can be written as

εℓji∇jH
µ
ip + εℓjiA

µ
νiH

ν
jp = 0. (2.2)
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Recall the relation

cofHµ
iℓ = εijkεℓmnH

µ
knH

µ
jm. (2.3)

Hence we have

∇ℓ cofHµ
iℓ = εijkεℓmn∇ℓH

µ
knH

µ
jm

+ εijkεℓmnH
µ
kn∇ℓH

µ
jm. (2.4)

But from the Codazzi relations we have

εℓmn∇ℓH
µ
kn + εℓmnA

µ
νnH

ν
ℓk = 0,

εℓmn∇ℓH
µ
jm + εℓmnA

µ
νmH

ν
ℓj = 0,

and substitution into (2.4) yields

∇ℓ cof Hµ
iℓ = −εijkεℓmnA

µ
νnH

µ
jmH

ν
ℓk

− εijkεℓmnA
µ
νmH

µ
knH

ν
ℓj,

i.e.

∇ℓ cofHµ
iℓ = −2εijkεℓmnA

µ
νnH

µ
jmH

ν
ℓk. (2.5)

Since
∂2W

∂Hµ
jk∂H

µ
iℓ

= 2εjimεkℓnH
µ
mk

and

cofHµ
iℓ = εjimεkℓnH

µ
mnH

µ
kj

we see (2.5) can be written as

εjimεkℓn∇ℓH
µ
mnH

µ
kj + εjimεkℓnH

µ
mn∇ℓH

µ
jk = −

∂2W

∂Hµ
iℓ∂H

µ
kn

Aµ
νnH

ν
ℓk,

1

2

∂2W

∂Hµ
iℓ∂H

µ
mn

∇ℓH
µ
mn +

1

2

∂2W

∂Hµ
jk∂H

µ
iℓ

∇ℓH
µ
jk = −

∂2W

∂Hµ
iℓ∂H

µ
kn

Aµ
νnH

ν
ℓk,

and hence
∂2W

∂Hµ
iℓ∂H

µ
jk

∇ℓH
µ
jk = −

∂2W

∂Hµ
iℓ∂H

µ
jm

Aµ
νmH

ν
ℓk. (2.6)

Next multiply (2.1) by

−
∂2W

∂Hµ
iℓ ∂H

µ
jk

to obtain

−
∂2W

∂Hµ
iℓ∂H

µ
jk

∇1H
µ
iℓ +

∂2W

∂Hµ
iℓ∂H

µ
jk

∇ℓH
µ
i1 −

∂2W

∂Hµ
iℓ∂H

µ
jk

Aµ
ν1H

ν
iℓ

+
∂2W

∂Hµ
iℓ∂H

µ
jk

Aµ
νℓH

ν
i1 = 0. (2.7)
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We can write (2.6), (2.7) as








0 0

0 −
∂2W

∂Hµ
iℓ∂H

µ
jk








∇1






Hµ
i1

Hµ
iℓ






+










0
∂2W

∂Hµ
iℓ∂H

µ
jk

∂2W

∂Hµ
iℓ∂H

µ
jk

0










∇ℓ






Hµ
i1

Hµ
jk






+









∂W

∂Hµ
iℓ∂H

µ
kn

Aµ
νnH

ν
ℓk

∂2W

∂Hµ
iℓ∂H

µ
jk

(−Aµ
ν1H

µ
iℓ + Aµ

νℓH
ν
i1)









= 0 (2.8)

Explicitly we have, say for coefficient of ∇2:
















∂2W

∂Hµ
11∂H

µ
12

∂2W

∂Hµ
12∂H

µ
12

· · ·
∂2W

∂Hµ
33H

µ
12

∂2W

∂Hµ
11∂H

µ
22

∂2W

∂Hµ
12∂H

µ
22

· · ·
∂2W

∂Hµ
33∂H

µ
22

∂2W

∂Hµ
11∂

µ
32

· · ·
∂2W

∂Hµ
33∂H

µ
32
















3×9

∇2














Hµ
11

Hµ
12

...
...

Hµ
33































∂2W

∂Hµ
12∂H

µ
11

∂2W

∂Hµ
22∂H

µ
11

∂2W

∂H32H
µ
11

∂2W

∂Hµ
12∂H

µ
12

∂2W

∂H22H
µ
12

∂2W

∂Hµ
32∂H

µ
12

...

∂2W

∂Hµ
12∂H

µ
33

∂2W

∂Hµ
22∂H

µ
33

∂2W

∂Hµ
32∂H

µ
33


















9×3

∇2











Hµ
11

Hµ
21

Hµ
31











We set the
3 × 9 coefficient matrix = Lµ

2

9 × 3 coefficient matrix = (Lµ
2 )T
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and the ∇2 term is

12







0 Lµ
2

3 × 9

(Lµ
2 )T 0

9 × 3

∇2

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Hµ
11

Hµ
21

Hµ
31

Hµ
11

Hµ
12
...

Hµ
33

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

︸ ︷︷ ︸
12

Hence if we define the ∇2 coefficient matrix as

Bµ
2 =

[

0 Lµ
2

(Lµ
2 )T 0

]

we see Bµ
2 is symmetric.

This symmetry holds for every coefficient matrix in (2.8) including ℓ = 1. We check the

coefficient matrix in the first term in (2.8) by a separate argument. Note








0 0

0 −
−∂2W

∂Hµ
iℓ∂H

µ
jk








is






03×3 09×3

03×9 −Lµ
03×9




 = Bµ

0

where

Lµ
0 =





















∂2W

∂Hµ
11∂H

µ
11

∂2W

∂Hµ
12∂H

µ
11

∂2W

∂Hµ
33∂

µ
11

∂2W

∂Hµ
11∂H

µ
12

∂2W

∂Hµ
12∂H

µ
12

∂2W

∂Hµ
33∂H

µ
12

...

∂2W

∂Hµ
11∂H

µ
33

∂2W

∂Hµ
33∂H

µ
33





















Hence our Codazzi system (2.8) can be written as

Bµ
0∇1U

µ +Bµ
ℓ ∇ℓU

µ +Qµ = 0 (2.9)
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where

(Uµ)T = (Hµ
11, H

µ
21, H

µ
1 , H

µ
11, H

µ
2 , H

µ
13, . . . . . .H

µ
33)

and

Qµ =










∂2W

∂Hµ
iℓ∂H

µ
kn

Aµ
νmH

ν
ℓk

∂2W

∂Hµ
u∂H

µ
jn

(−Aµ
u1H

ν
iℓ + Aµ

νℓH
ν
21)










}

3

}

9

(2.10)

3 Symmetrization of the linearized Codazzi equations

The linearization of the relations (2.1), (2.2) is

∇1Ḣ
µ
iℓ − ∇ℓ Ḣ

µ
i1h+ Ȧµ

ν1H
ν
iℓ + Aµ

ν1Ḣ
ν
iℓ

− Ȧµ
νℓH

ν
i1 − Ȧµ

νℓḢ
ν
i1

− Γ̇q
i1H

µ
ℓq − Γ̇q

ℓ1H
µ
iq

+ Γ̇q
iℓH

µ
1q + Γ̇q

1ℓH
µ
iq = 0. (3.1)

εℓji(∇jḢ
µ
ip − Γ̇q

jpH
µ
iq − Γ̇q

jiH
µ
pq)

+ εℓji(Ȧ
µ
νiH

ν
jp + Aν

νiḢ
ν
jp) = 0 (3.2)

or

εkℓn(∇ℓḢ
µ
mn − Γ̇q

ℓmH
µ
nq − Γ̇q

ℓnH
µ
mq)

+ εkℓn(Ȧ
µ
νnH

ν
ℓm + Aµ

νnḢ
ν
ℓm) = 0 (3.3)

Multiply (3.3) by εjimH
µ
kj and we have

εjimεkℓnH
µ
kj(∇ℓḢ

µ
mn − Γ̇q

ℓmH
µ
nq − Γ̇q

ℓnH
µ
mq)

+ εjimεkℓnH
µ
jk(Ȧ

µ
νnH

ν
ℓm + Aµ

νnḢ
ν
ℓm) = 0, (3.4)

and hence

∂2W

∂Hµ
iℓ∂H

µ
mn

(∇ℓḢ
µ
mn − Γ̇q

ℓmH
µ
nq − Γ̇q

ℓnH
µ
mq)

+
∂2W

∂Hµ
iℓ∂H

µ
mn

(Ȧµ
νnH

ν
ℓm + Aµ

νnḢ
ν
ℓm) = 0. (3.5)

Next multiply (3.1) by

−
∂2W

∂Hµ
iℓ∂H

µ
jk

29



to obtain

−
∂2W

∂Hµ
iℓ∂H

µ
jk

∇ℓḢ
µ
iℓ +

∂2W

∂Hµ
iℓ∂H

µ
jn

∇ℓḢ
µ
i1

+
∂2W

∂Hµ
iℓ∂H

µ
jk

(Ȧν1H
ν
iℓ + Aν1Ḣ

ν
iℓ

− Ȧµ
νℓH

ν
i1 − Aµ

νℓḢ
ν
i1 (3.6)

− Γ̇q
i1H

µ
ℓq − Γ̇q

ℓ1H
µ
iq

− Γ̇q
iℓH

µ
1q − Γ̇q

1ℓH
µ
iq)

Define

Q̇µ =










∂2W

∂Hµ
iℓ∂H

µ
kn

(Ȧµ
νnH

ν
ℓk + Aµ

νnḢ
ν
ℓk)

∂2W

∂Hµ
iℓ∂H

µ
jk

(−Ȧµ
ν1H

ν
iℓ − Aν1Ḣ

ν
iℓ + Ȧµ

νℓH
ν
i1 + AνℓḢ

ν
i1)










(3.7)

Ṡµ =










∂2W

∂Hµ
iℓ∂H

µ
mn

(−Γ̇q
ℓmH

µ
nq − Γ̇q

ℓnH
µ
mq)

∂2W

∂Hµ
iℓ∂H

µ
jk

(−Γ̇q
i1H

µ
ℓq − Γ̇q

ℓ1H
µ
iq − Γ̇q

iℓH
µ
1q − Γ̇q

1ℓH
µ
iq)










(3.8)

Then the linearized Codazzi system (3.4), (3.5) is now

Bµ
ν∇1U̇

µ +Bµ
ℓ ∇ℓU̇

µ + Q̇µ + Ṡµ = 0. (3.9)

4 The Ricci equations

Without loss of generality1 we can take

Aν
µ1 = 0 (4.1)

and hence the Ricci equations imply

∂1A
ν
µ2 = gpq(Hµ

1pH
ν
2q −Hµ

2pH
ν
1q), (4.2)

∂1A
ν
µ3 = gpq(Hµ

1pH
ν
3q −Hµ

3pH
ν
1q). (4.3)

1Deane Yang pointed out this equality to me and called it a “gauge condition”. An analogy with

continuum mechanics might be setting the pressure equal to zero on the surface of a water wave.
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Thus Aν
µ2, A

ν
µ3 are completely determined by their data on a plane x1 = const = −L and

the set of Hν
jk. Thus we may substitute

Aν
µ2(x1, x2, x3) = Aν

µ2(−L, x2, x3) +

∫ x1

−L

gpq(Hµ
1pH

ν
2q −Hµ

2pH
ν
1q)dx

′

1 (4.4)

Aν
µ3(x1, x2, x3) = Aν

µ3(−L, x2, x3) +

∫ x1

−L

gpq(Hµ
1pH

ν
3q −Hµ

3pH
ν
1q)dx

′

1, (4.5)

into (2.10). Hence the dependence on Aµ
νℓ is now reduced to dependence on the data

provided on x1 = −L. Of course the data must be consistent with the additional Ricci

equations.

5 The full nonlinear system

In analogy with continuum mechanics we restate our derivation of the full nonlinear

system.

The balance laws are given by the quasi-linear Codazzi equations (2.9):

Bµ
0∇1U

µ +Bµ
ℓ ∇ℓU

µ +Qµ = 0

where Uµ ∈ R
12 for each µ = 4, 5, 6, Qµ given by (2.10).

The constitutive relations are given by the Gauss equations

∑

µ

Hµ
ikH

µ
jℓ −Hµ

iℓH
µ
jk = Rijkℓ

and constitutive relation for Aµ
νℓ given by (4.1), (4.4).

According to the theorem of Blum [11] if Hµ
jk are of full rank there are 27 independent

equations in the 27 unknowns Hµ
ij , A

µ
νℓ since the Ricci equations follow from the Gauss

and Codazzi equations. Notice relations (4.4), (4.5) from the Ricci equations do not

completely eliminate the Aµ
νℓ in favour of Hµ

ij, the initial data on x1 = −L still enter into

values of Aµ
νℓ.

6 The linearized Ricci equations

We linearize (4.1), (4.4), (4.5) to obtain the linearized Ricci equations

Ȧν
µ1 = 0, (6.1)
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Ȧν
µ2(x1, x2, x3) = Ȧν

µ2(−L, x2, x3)

+

∫ x1

−L

ġpq(Hµ
1pH

ν
2q −Hµ

2pH
ν
1q)

+ gpq(Ḣµ
1pH

ν
2q +Hµ

1pḢ
ν
2q (6.2)

− Ḣµ
1pH

ν
2q −Hµ

1pḢ
ν
2q)dx

′

1,

Ȧν
µ3(x1, x2, x3) = Ȧν

µ3(−L, x2, x3)

+

∫ x1

−L

ġpq(Hµ
1pH

ν
3q −Hµ

3pH
ν
1q)

+ gpq(Ḣµ
1pH

ν
3q +Hµ

1pḢ
ν
3q (6.3)

− Ḣµ
1pH

ν
3q −Hµ

1pḢ
ν
3q)dx

′

1.

If on the boundary of our domain Ȧµ2(−L, x2, x3), Ȧµ3(−L, x2, x3) are zero then their

contribution to (6.2), (6.3) is zero. Similarly the integral terms in (6.2), (6.3) are bounded

by K vol(Ω) where

K = ‖ġpq‖L2(Ω) sup
n
µ

j,k

|Hµ
jk|

2

+ sup
Ω

‖gpq‖ sup
Ω
µ

j,k

|Hµ
jk| ‖Ḣ

µ
jk‖L2(Ω;R27)

i.e.

|Ȧν
µ2| ≤ K vol(Ω)1/3, (6.4)

|Ȧν
µ3| ≤ K vol(Ω)1/3. (6.5)

Proof of 6.4

Let us consider typical terms in (6.2).

a(x1, x2, x3) =

∫ x1

−L

ġpq(Hµ
1pH

ν
2q)dx

′

1

b(x1, x2, x3) =

∫ x1

−L

gpq(Ḣµ
1pH

ν
2q)dx

′

1

where we do not sum on p, q.

From Cauchy-Schwarz we have

|a(x1, x2, x3)| ≤ sup
Ω

|Hµ
1pH

ν
2q|

(∫ x1

−L

dx′1

)1/2(∫ x1

−L

|ġpq|2dx′1

)1/2

≤ sup
Ω

|Hµ
1pH

ν
2q|(2L)1/2

(∫ L

−L

|ġpq|2dx′1

)1/2

.
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Since the right hand side is independent of x1 we have

∫ L

−L

∫ L

−L

∫ L

−L

|a(x1, x2, x3)|
2dx1 dx2 dx3

≤ (sup
Ω

|Hµ
1pH

ν
2q|)

24L2

∫ L

−L

∫ L

−L

∫ L

−L

|ġpq|2dx′1dx2dx3

and

‖a‖L2(Ω) ≤ sup
Ω

|Hµ
1pH

ν
2q|2L‖ġ

pq‖L2(Ω).

Similarly we have

|b(x1, x2, x3)| ≤ sup
Ω

|gpqHν
2q|

∫ L

−L

|Ḣµ
1p(x

′

1, x2, x3)|dx
′

1

where again the right hand side is independent of x1.

Thus we see

|b(x1, x2, x3)|
2 ≤ (sup

Ω
|gpqHν

pq|)
22L

∫ L

−L

|Ḣµ
1p(x

′

1, x2, x3)|
2dx′1

and
∫ L

−L

∫ L

−L

∫ L

−L

|b(x1, x2, x3)|
2 ≤

sup
Ω

|gpqHν
2q|

24L2

∫ L

−L

∫ L

−L

∫ L

−L

|Ḣµ
1p(x

′

1, x2, x3)|
2dx′1, dx2, dx3.

This yields

‖b‖2
L2(Ω) ≤ sup

Ω
|gpqHν

2q|
2 2L‖Ḣµ

1p‖L2(Ω)

7 The linearized Gauss equations

The linearized Gauss equations are

∑

µ

Ḣµ
ikH

µ
jℓ +Hµ

ikḢ
µ
jℓ

− Ḣµ
iℓH

µ
jk −Hµ

iℓḢ
µ
jk (7.1)

= Ṙijkℓ.

These are 6 equations in the 18 components Ḣµ
ij. We say Hµ

ij is non-degenerate in

the neighbourhood of x = 0 if 6 of the components of Ḣµ
ij can be solved in terms of

the remaining 12 components and Ṙijkℓ. A sufficient condition for non-degeneracy is

provided in Theorem F of the paper of Bryant, Griffiths, Yang [2] which establishes non-

degeneracy if at least one component of the Riemann curvature tensor Rijkℓ is non-zero.
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We assume our set Hµ
ij is non-degenerate in a neighbourhood of x = 0. This means that

the vector

U̇ =






U̇4

U̇5

U̇6






can be written as

U̇ = CĤ +DṘ (7.2)

where Ĥ denotes the distinguished 12 components of the set Ḣµ
ij and Ṙ denotes the 6

non-trivial elements of the perturbed Riemann curvature tensor. Hence U̇ ∈ R
36, Ĥ ∈

R
12, Ṙ ∈ R

6, C is a 36 × 12 matrix, D is a 36 × 6 matrix.

8 The closed symmetric system for the linearized

problem and quasi-linear problem

Recall the symmetrized Codazzi equations for the linearized problem are

Bµ
0∇1U̇

µ +Bµ
ℓ ∇ℓU̇

µ + Q̇µ + Ṡµ = 0.

Set

B0 =

∣
∣
∣
∣
∣
∣
∣

B4
0 0 0

0 B5
0 0

0 0 B6
0

∣
∣
∣
∣
∣
∣
∣

Bℓ =

∣
∣
∣
∣
∣
∣
∣

B4
ℓ 0 0

0 B5
ℓ 0

0 0 B6
ℓ

∣
∣
∣
∣
∣
∣
∣

Q̇ =

∣
∣
∣
∣
∣
∣
∣

Q̇4

Q̇5

Q̇6

∣
∣
∣
∣
∣
∣
∣

Ṡ =

∣
∣
∣
∣
∣
∣
∣

Ṡ4

Ṡ5

Ṡ6

∣
∣
∣
∣
∣
∣
∣

so that the system becomes

B0∇1U̇ +Bℓ∇ℓU̇ + Q̇+ Ṡ = 0. (8.1)

Q̇ depends linearly on Ḣµ
ij and Ȧµ

νm as given in (3.6). We represent this dependence by

Q̇ = EU̇ + FȦ (8.2)

U̇ ∈ R
36, Ȧ ∈ R

6, E a 36 × 36 matrix, F a 36 × 6 matrix.
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Substitute (6.2) into (7.2) to obtain

Q̇ = E(CĤ +DṘ) + FȦ

= GĤ + JṘ + FȦ (8.3)

where G = EC is a 36 × 12 matrix, J = ED is a 36 × 36 matrix. Hence via (7.2) the

system (8.1) has the form

B0∇1(CĤ +DṘ) +Bℓ∇ℓ(CĤ +DṘ)

+GĤ + FṘ + FȦ+ Ṡ = 0. (8.4)

We rewrite this in the form

B0C∇1Ĥ +BℓC∇ℓĤ

+ (B0∇1C +Bℓ∇ℓC +G)Ĥ

+ B0∇1DṘ +Bℓ∇ℓDṘ (8.5)

+ GṘ + FȦ+ Ṡ = 0.

Next multiply (7.5) from the left by the 12 × 36 matrix CT to obtain

A0∇1Ĥ + Aℓ∇ℓĤ + BĤ

+ CTFȦ+ Λ = 0 (8.6)

where

A0 = CTB0C,

Aℓ = CTBℓC,

B = CT (B0∇1C +Bℓ∇ℓC +G),

Λ = CT (B0∇1DṘ+ Bℓ∇ℓDṘ +GṘ + Ṡ).

To system (7.6) we amend the linearized Ricci equations (6.2), (6.3) with Ȧν
p2(−L, x2, x3) =

Ȧν
µ3(−L, x2, x3) = 0

Ȧν
µℓ(x1, x2, x3) =

∫ x1

−L

ġpq(Hµ
1pH

ν
ℓq −Hµ

ℓpH
ν
1q)

+ gpq(Ḣµ
1pH

ν
ℓq +Hµ

1pḢ
ν
ℓq − Ḣµ

1pH
ν
ℓq −Hµ

1pḢ
ν
ℓq)dx

′

1

ℓ = 2, 3, (8.7)

Ȧν
µ1 = 0. (8.8)

If we substitute (8.7), (8.8) into (8.6) we see that this system is a symmetric system of 12

equations in the 12 unknowns Ĥ which are weakly non-local due to (8.7). However the

non-locality is very weak as seen by relations (6.4), (6.5).

The above derivation was of course for the linearized system, but examination

of the steps used shows the same procedure will yield a quasi-linear system of

12 equations for the non-linear problem as well.
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9 The weak form of the closed system

Define the linear operator L by

LĤ = A0∇1Ĥ + Aℓ∇ℓĤ + BĤ + CTFȦ (9.1)

where Ȧ is defined by (8.7), (8.8).

Let (·, ·) denote the inner product on L2(Ω; R12) and V ∈ C∞

0 (Ω; R12). Then the weak

form of

LĤ = −Λ

is

(L∗V, Ĥ) = −(V,Λ). (9.2)

Hence (L∗V, Ĥ) defines a bilinear form on H1
0 (Ω; R12).

Recall the Lax-Milgram Theorem [15].

Theorem 4. Let X be a Hilbert space and C(χ, ψ) a (possibly complex) bilinear functional

defined on the product space X × X. Let ‖ · ‖X and (·, ·)X denote the norm and inner

product of X. If

(i) (boundedness) |C(χ, ψ)| ≤ γ‖χ‖X‖ψ‖X

(ii) (coerciveness) C(χ, χ) ≥ δ‖χ‖2
X

for δ, γ positive constants, then there exists a uniquely determined bounded linear operator

T with bounded inverse T−1 such that

C(χ, Tψ) = (χ, ψ)X ,

‖T‖X ≤ δ−1, ‖T−1‖X ≤ γ whenever χ, ψ ∈ X.

Let us choose X = H1
0 (Ω; R12) for (9.2). Condition (i) of the Lax-Milgram Theorem holds

but condition (ii) does not. Hence we regularize (9.2) and write the regularized problem

as

(L∗V, Ĥ) + ε(∂V, ∂Ĥ) = −(V,Λ) − ε(∂V, ∂Λ). (9.3)

Now our bilinear form Cε is defined by the left hand side of (9.3). We assume the weaker

coerciveness estimate

(L∗Ĥ, Ĥ) ≥ δ1‖Ĥ‖2
L2(Ω;R12) (9.4)

for some positive constant δ1. Then we have

(i) |Cε(V, Ĥ)| ≤ γ‖V ‖x‖Ĥ‖x
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and

(ii) Cε(Ĥ, Ĥ) ≥ δ1‖Ĥ‖2
L2(Ω,R12) + ε(∂Ĥ, ∂Ĥ).

Thus the Lax-Milgram Theorem applies and we get a solution Ĥε = TεΛ of (8.3):

(L∗V, Ĥε) + ε(∂V, ∂Ĥε) = −(V,Λ) − ε(∂V, ∂Λ) (9.5)

or alternatively

(L∗V, Ĥε) − ε(∂2V, Ĥε) = −(V,Λ) − ε(∂V, ∂Λ) (9.6)

for all V ∈ H1
0 (Ω; R12).

Since (9.5) holds for all V ∈ H1
0 (Ω) take V = Ĥε and we have

(L∗Ĥε, Ĥε) + ε(∂Ĥε, ∂Ĥε)

= (−Hε,Λ) − ε(∂Ĥε, ∂Λ). (9.7)

We estimate the left hand side of (8.7) from below and the right hand side from above

δ1‖Ĥε‖
2
L2(Λ;R12) + ε‖∂Ĥε‖

2
L2(Ω;R12) (9.8)

≤ ‖Ĥε‖L2(Ω;R12)‖Λ‖L2(Ω;R12) + ε‖∂Ĥε‖L2(Ω;R12)∂Λ‖L2(Ω;R12)

or

δ1‖Ĥε‖
2
L2(Ω;R12) + ε(‖∂Ĥε‖L2(Ω;R12) −

1

2
‖∂Λ‖2

L2(Ω;R12))

≤ ‖Ĥε‖L2(Ω;R12)‖Λ‖L2(Ω,R12) +
ε

4
‖∂Λ‖2

L2(Ω;R12)

≤
δ1
2
‖Ĥε‖

2
L2(Ω;R12) +

1

2δ1
‖Λ‖L2(Ω;R12) +

ε

4
‖∂Λ‖2

L2(Ω;R12)

and hence we have

δ1
2
‖Ĥε‖

2
L2(Ω;R12) ≤

1

2δ1
‖Λ‖L2(Ω;R12) +

ε

4
‖∂Λ‖2

L2(Ω;R12). (9.9)

Thus for Λ ∈ H1
0 (Ω) we have Ĥε bounded independently of ε in L2(Ω; R12). Thus Ĥε has

a weakly convergent subsequence (also denoted by Ĥε) so that

Ĥε ⇀ Ĥ in L2(Ω; R12).

Thus for all V ∈ C∞

0 (Ω) we may pass to the limit as ε → 0 in (8.6) to find

(L∗V, Ĥ) = −(V,Λ).

The weak solution Ĥ is unique via coercivity (9.4).

We summarize this result in the following theorem.
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Theorem 5. If the operator L defined by (9.1) satisfies the coercivity condition

(L∗Ĥ, Ĥ) ≥ δ1‖Ĥ‖L2(Ω;R12)

for some δ > 0 the weak form of the linearized isometric embedding problem (9.2) has a

unique solution for all Λ ∈ H1
0 (Ω).

Now let us apply Theorem 2 to our system (9.1), (9.7), (9.8). First we assume that we

only perturb from our here (undotted) embedding in a small neighbourhood of x = 0.

The point x = 0 is chosen to be the origin of a system of normal coordinates where the

Christoffel symbols Γq
ij vanish at x = 0. We take our small neighbourhood to be the box,

−L ≤ xi ≤ L, i = 1, 2, 3. Hence on this box Ȧ defined by (8.7), (8.8) and satisfying (6.4),

(5.5) will be negligible and not enter into the coercivity computation. Thus we can state

Theorem 6. If the quadratic form

ĤT (−∂1A0 − ∂ℓAℓ + B)Ĥ (9.10)

is positive (or negative) definite at x = 0 there exists a unique weak solution to our

linearized isometric embedding equations (9.1), (8.7), (8.8).

The parameters entering our 12 × 12 coefficient symmetric matrix

−∂1A0 − ∂ℓAℓ +
1

2
(BT + B) (9.11)

are Hµ
ij, ∂1A0, ∂1A1, ∂2A2, ∂3A3, A

ν
µ2, A

ν
µ3 all evaluated at x = 0. Hence via the classical

chain rule applied to A0,A1,A2,A3 the parameters entering into the coefficient matrix

are Hµ
ij, ∂ℓH

µ
iℓ, A

ν
µ2, A

ν
µ3 all evaluated at x = 0

(i) From the Gauss relations this gives 12 independent Hµ
ij.

(ii) From the differentiated Gauss relations (see e.g. Poole [6]) this gives 15 independent

∂ℓH
µ
ij.

(ii) There are 6 independent Aν
µ2, A

ν
µ3.

Hence there are 12 + 15 + 6 = 33 free parameters entering into the 12 × 12 matrix.
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