- version spaces

. A hypothesis h is consistent with a set of training examples D
of target concept c if and only if h(xz) =c(z) for each
training example < z,c(z) > in D, that is,

Consistent(h,D) = (Vz < z,c(z) >€ D) h(z) =c(z).

. The version space, VS, with respect to hypothesis space H

and training examples D), is the subset of hypotheses from A
consistent with all training examples in D, that is,
VS, = {h € H| Consistent(h,D)}.

. representation

The general boundary G of VS,, is the set of its maximally
general members, that is,
G= {g € H| Consistent(g, D) A (= Elg, e H)((g > gg)/\ C’onsistent(g,, D))}

The specific boundary S of VS, is the set of its maximally
specific members, that is,
S= {s € H| Consistent(s, D) A (=3 s € H)((s> gsl) A Consistent(s,, D))}

Every member of VS, lies between these boundaries, that is,

VSyp=1{h€ HI(Fs€ 9(Ige G)gz h = s)}.



Example Version Space

S: | | <Sunny, Warm, ?, Strong, 7, 7=}

<Sunny, ?, 7, Strong, 7, > <Sunny, Warm, ?, 2, ?, 7= <?, Warm, ?, Strong, 7, ’>

NN

G:| {<Sunny, 2,2, 2,2 7> <? Warm, ?, 7, 7, 7> |

- CE (Candidate Elimination) algorithm
Step 1. Initialize G and S as
G=1{<77,270%7>} and S={<9,9,9,3,3, 3 >}.
Step 2. For each training sample d, do
e if d is a positive sample,
(1) remove from G any hypothesis that is inconsistent with d.
(2) for each hypothesis s in .S that is inconsistent with d,
1) remove s from 5.
2) add to S all minimal generalizations h of s such that
(i) h is consistent with d, and
(i) some member of & is more general than h.
3) remove from S any hypothesis that is more general than
another hypothesis in 6.



e if d is a negative sample,
(1) remove from S any hypothesis that is inconsistent with d.
(2) for each hypothesis ¢ in G that is inconsistent with d,
1) remove g from G.
2) add to & all minimal specifications of h of g such that
(i) h~ is inconsistent with d, and
(i) some member of S is more specific than h.
(3) remove from G any hypothesis that is less general than
another hypothesis in G.

Example Trace (initialize G and S)

S : (<0, 0,0,0, 0, g=)

Gy {<?,2,2,2,7, 75}




Example Trace (Example 1 and 2)

S0t|<@. 0.0 0 0 0

1

{ =Surny, Warm, Normal, Strong, Warm, Same= }

G

GTGI'GE: {{..?, RERD ?}}

|

{ =Sunny, Warm, ?, Strong, Warm, Same=)

Training examples:

1. <Sunny, Warm, Normal, Strong, Warm, Same=, Enjoy Sport = Yes

2. <Sunny, Warm, High, Strong, Warm, Same>, Enjoy Sport = Yes

Example Trace (Example 3)

59,5 3:

{ <Sunny, Warm, ?, Strong, Warm, Same> ]

- {<Sunny, ?, 2, 2, 7, 7= <% Warm, 7, 2, 2, 7= <2 70 0 1, Same>|

[ ]

Gy: | (<22,2,27 7>

Training Example:

3. <Rainy, Cold, High, Strong, Warm, Change>, EnjoySport=No




Example Trace (Example 4)

8 3: |{<Sunny, Warm, ?, Strong, Warm, Same> )

Y

S 4 [ <Sunny, Warm, ?, Strong, 7, >

Gg: |[{<Sunny, 2, 7, 2, 2, 7> <? Warm, 2, 7, ?, 7>}
'Y

r

3. tl-:.‘funny, 20000 <2 Warm, 2,2, 2 P> <P 2 7 2 7 Same>)

Training Example:

4. <Sunny, Warm, High, Strong, Cool, Change>, EnjoySport = Yes

Example Trace (The Final Version Space)

34: {<Sunny, Warm, ?, Strong, ?, ?>)

<Sunny, ?, ?, Strong, ?, 7> <Sunny, Warm, ?, ?, ?, ?> <?, Warm, ?. Strong, ?, ? >

NN

4+ {<Sunny, 2,2, 2, 7, 7>, <? Warm, ?, ?, ?, 7>)

G

The final version space for the EnjoySport concept learning problem



How should these be classified?

|§:.‘nm.ln Warm, ¥, Strong, .‘:v'l

/ﬂ\

<Surny, 7 Sfrong, P M <Sunny, Wearm, *, 2 P, = = Warm, g, ST
&

~ 7 \/

i | | <Sunmy, 7, 7 0 7 7=, . Warm, ?, 7, =1 |

(Sunny Warm Normal Strong Cool Change)
{Rainy Cool Normal Light Warm Same}

{(Sunny Warm Normal Light Warm Same)

- CE algorithm will converge toward the hypothesis that correctly
describes the target concept, provided
(1) no errors in training examples (no noise)
(2) target concept is included in the hypothesis space H.
- inductive bias
. In EnjoySport, A contains only conjunction of attribute values,
that is, the disjunctive target concepts such as
< Sunny,?,7,7,7,7>V < doudy,?,7,7,7,7 >
can not be described.
. If H contains conjunction, disjunction, negation over #,
|H|>|H| — large number of samples are required to
generalize hypotheses due to large version space.



example (EnjoySport):
|X|=3-2"=096 distinctive instances
|H|=5 - 4> =5120 syntactically distinctive hypotheses
or 1+4 - 3° =973 semantically distinctive hypotheses
|H| = 2% =2% ~ 10® distinctive hypotheses

. A learner that makes no apriori assumptions regarding
the identity of the target space has no rational basis for
classifying any unseen instances.

So we need some assumption on H. — inductive bias

. inductive inference

Let
L : an arbitrary learning algorithm,
C : an arbitrary target concept,
D, =< z,c(z) > : an arbitrary set of training data, and
L(z;, D) : classification that Z assigns to z, (new instance)

after learning D..

Then, inductive inference step performed by Z is described by

(DC/\xZ.) > L(xi,DC).

— L(z,, D,) is inductively inferred from (D.N\z,).



. The inductive bias of L is any minimal set of assertion B
such that for any target concept ¢ and corresponding
training examples D,

(Va, € X)(BADAz,) v Lz, D,))
— for all z,, L(x; D.) follows deductively from (BN D,A\x;) or
we can say that Z(z;, D.) is provable from (BAD.N\x;).

- inductive bias and equivalent deductive system

Inductive system

Classification of
- . Candidane new instance, of
Training examples Elimination “don't know”
Algorithm —
New instance Using Hypothesis
Space H

Equivalent deductive system

Classification of

new instance, or

“don’t know”
-

Training examples

o Theorem Prover
New instance

Assertion " H contains
the target coneept”

/

Inductive bias
made explicit




- examples of inductive bias

. Rote learner: store examples, classify z if and only of it matches
previously observed samples — no inductive bias.
. CE algorithm: the target concept c is contained in
the given hypothesis space H, that is, ¢ € H. Because,
if ¢ € H, the inductive inference performed by CE algorithm can
be proved deductively:

(1) ce Hi-ce Voy,.

(2) L(z; D.) is defined to be the unanimous vote of

all hypotheses in Vs,,,.
(3) Therefore, c(x;) = L(z;, D,).

. Find-S algorithm:

1) ce H

(2) All instances are negative instances unless the opposite is
entailed by its other knowledge. This implies that only
the positive instances are meaningful for the target concept.

Reference: Machine Learning, chapter 2.



