- version spaces

. A hypothesis h is *consistent* with a set of training examples D of target concept c if and only if h(x) = c(x) for each training example $\langle x, c(x) \rangle$ in D, that is,

 $Consistent(h, D) \equiv (\forall x < x, c(x) > \in D) h(x) = c(x).$

. *The version space*, VS_{HD} with respect to hypothesis space H and training examples D, is the subset of hypotheses from H consistent with all training examples in D, that is,

 $VS_{HD} \equiv \{h \in H | Consistent(h, D)\}.$

. representation

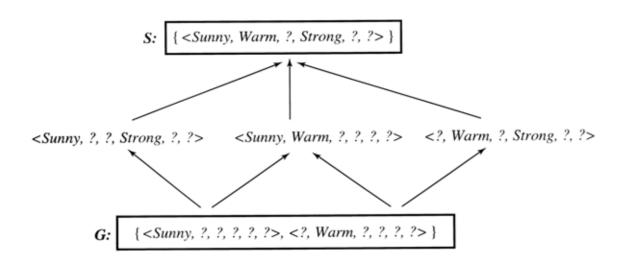
The general boundary G of VS_{HD} is the set of its maximally general members, that is,

 $G \equiv \left\{g \in H | \ \textit{Consistent}(g, D) \land (\neg \exists \ g^{'} \in H)((g^{'} > _{g}g) \land \textit{Consistent}(g^{'}, D))\right\}.$

The specific boundary S of *VS*_{HD} is the set of its maximally specific members, that is, $S \equiv \left\{ s \in H | Consistent(s, D) \land (\neg \exists s^{'} \in H)((s > {}_{q}s^{'}) \land Consistent(s^{'}, D)) \right\}.$

Every member of VS_{HD} lies between these boundaries, that is, $VS_{HD} \equiv \{h \in H | (\exists s \in S) (\exists g \in G) (g \ge {}_{g}h \ge {}_{g}s)\}.$

Example Version Space



- CE (Candidate Elimination) algorithm

Step 1. Initialize G and S as

 $G = \{ < ?, ?, ?, ?, ?, ? \} \text{ and } S = \{ < \emptyset, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset > \}.$

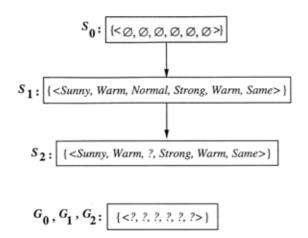
- Step 2. For each training sample d, do
 - if d is a positive sample,
 - (1) remove from G any hypothesis that is inconsistent with d.
 - (2) for each hypothesis s in S that is inconsistent with d,
 - 1) remove s from S.
 - 2) add to S all minimal generalizations h of s such that
 - (i) h is consistent with d, and
 - (ii) some member of G is more general than h.
 - 3) remove from S any hypothesis that is more general than another hypothesis in S.

- if d is a negative sample,
- (1) remove from S any hypothesis that is inconsistent with d.
- (2) for each hypothesis g in G that is inconsistent with d,
 - 1) remove g from G.
 - 2) add to G all minimal specifications of h of g such that
 - (i) h is inconsistent with d, and
 - (ii) some member of S is more specific than h.
- (3) remove from G any hypothesis that is less general than another hypothesis in G.

Example Trace (initialize G and S)

{<0, 0, 0, 0, 0, 0>} s₀:|

Example Trace (Example 1 and 2)



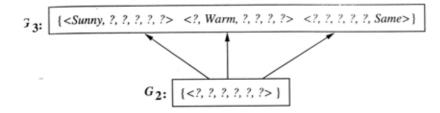
Training examples:

1. <Sunny, Warm, Normal, Strong, Warm, Same>, Enjoy Sport = Yes

2. <Sunny, Warm, High, Strong, Warm, Same>, Enjoy Sport = Yes

Example Trace (Example 3)

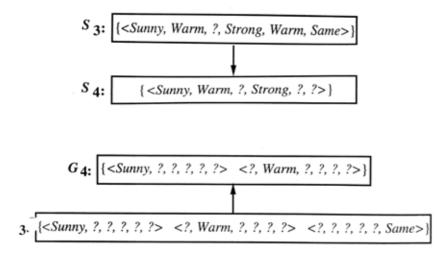
S2, S3: { <Sunny, Warm, ?, Strong, Warm, Same> }



Training Example:

3. <Rainy, Cold, High, Strong, Warm, Change>, EnjoySport=No

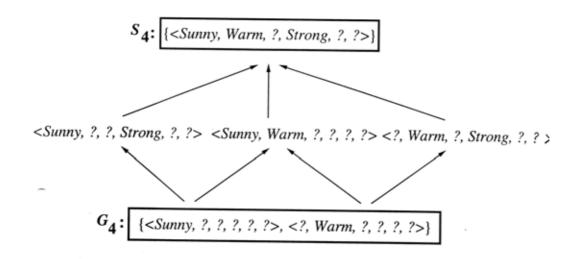
Example Trace (Example 4)



Training Example:

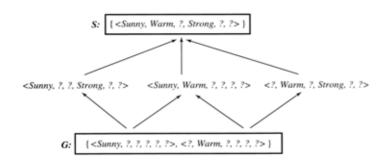
4.<Sunny, Warm, High, Strong, Cool, Change>, EnjoySport = Yes

Example Trace (The Final Version Space)



The final version space for the EnjoySport concept learning problem

How should these be classified?



(Sunny Warm Normal Strong Cool Change) -

(Rainy Cool Normal Light Warm Same) ~

(Sunny Warm Normal Light Warm Same)

< Surge " A House String Warm Some) -

- CE algorithm will converge toward the hypothesis that correctly describes the target concept, provided

- (1) no errors in training examples (no noise)
- (2) target concept is included in the hypothesis space H.
- inductive bias
- . In EnjoySport, *H* contains *only conjunction* of attribute values, that is, the disjunctive target concepts such as

 $< Sunny, ?, ?, ?, ?, ? > \lor < Cloudy, ?, ?, ?, ? >$

can not be described.

. If $H^{'}$ contains conjunction, disjunction, negation over H,

 $|H^{'}| \gg |H| \rightarrow$ large number of samples are required to generalize hypotheses due to large version space.

example (EnjoySport):

 $|X| = 3 \cdot 2^5 = 96$ distinctive instances $|H| = 5 \cdot 4^5 = 5120$ syntactically distinctive hypotheses or $1 + 4 \cdot 3^5 = 973$ semantically distinctive hypotheses $|H'| = 2^{|X|} = 2^{96} \approx 10^{28}$ distinctive hypotheses

. A learner that makes no apriori assumptions regarding the identity of the target space has no rational basis for classifying any unseen instances.

So we need some assumption on $H. \rightarrow$ inductive bias

. inductive inference

Let

L: an arbitrary learning algorithm,

C: an arbitrary target concept,

 $D_c = \langle x, c(x) \rangle$: an arbitrary set of training data, and

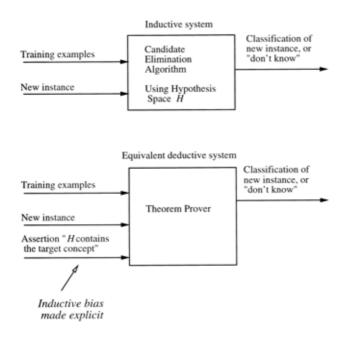
- $L(x_i, D_c)$: classification that L assigns to x_i (new instance) after learning D_c .
- Then, inductive inference step performed by L is described by $(D_c\wedge x_i)>L(x_i,D_c).$
- $\rightarrow L(x_i, D_c)$ is inductively inferred from $(D_c \wedge x_i)$.

. The inductive bias of L is any minimal set of assertion B such that for any target concept c and corresponding training examples D_c

 $(\forall x_i \in X)((B \land D_c \land x_i) \vdash L(x_i, D_c))$

 \rightarrow for all x_i , $L(x_i, D_c)$ follows deductively from $(B \wedge D_c \wedge x_i)$ or we can say that $L(x_i, D_c)$ is provable from $(B \wedge D_c \wedge x_i)$.

- inductive bias and equivalent deductive system



- examples of inductive bias
- . Rote learner: store examples, classify x if and only of it matches previously observed samples \rightarrow *no inductive bias*.

. CE algorithm: the target concept c is contained in the given hypothesis space H, that is, $c \in H$. Because, if $c \in H$, the inductive inference performed by CE algorithm can be proved deductively:

- (1) $c \in H \vdash c \in VS_{HD_c}$.
- (2) $L(x_i, D_c)$ is defined to be the unanimous vote of all hypotheses in VS_{HD_c} .
- (3) Therefore, $c(x_i) = L(x_i, D_c)$.

. Find-S algorithm:

- (1) $c \in H$
- (2) All instances are negative instances unless the opposite is entailed by its other knowledge. This implies that *only the positive instances are meaningful* for the target concept.

Reference: Machine Learning, chapter 2.