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We develop sampling expansion formulas on the shift invariant closed subspace V (φ) of
L2(R) generated by a frame or a Riesz generator φ(t). We find necessary and sufficient
conditions under which a regular shifted sampling expansion to hold on V (φ) and also
introduce a single channel sampling on V (φ) together with some illustrating examples.
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1. Introduction

The celebrated WSK (Whittaker–Shannon–Kotel’nikov)-sampling theorem7,9 says
that any signal f(t) of finite energy with band-width π, that is, f ∈ PWπ can be
reconstructed via its regularly spaced discrete sample values {f(n) : n ∈ Z} as

f(t) =
∑
n∈Z

f(n) sinc(t − n),

which converges both in L2(R) and uniformly on R, where, sinct = sin πt
πt is the

cardinal sinc function and PWπ is the Paley–Wiener space:

PWπ := {f ∈ L2(R) : suppf̂(ξ) ⊆ [−π, π]}.

Here F [f ](ξ) = f̂(ξ) is the Fourier transform of f(t), which is normalized as

f̂(ξ) =
1√
2π

∫ ∞

−∞
f(t)e−itξdt for f ∈ L2(R) ∩ L1(R)

so that F [·] is a unitary operator from L2(R) onto L2(R).
As a natural generalization of the WSK-sampling theorem, many authors have

developed sampling theory on general shift invariant spaces.1–3,8,11–14 For any φ(t)
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in L2(R), we let

V (φ) := span{φ(t − n) : n ∈ Z}

be the closed subspace of L2(R) generated by integer translates {φ(t−n) : n ∈ Z}
of φ(t) and call V (φ) the shift invariant space generated by φ(t). Then PWπ is
the shift invariant space generated by sinct, of which {sinc(t − n) : n ∈ Z} is an
orthonormal basis. For example, Walter11 developed a regular sampling theorem
on a shift invariant space V (φ), where φ(t) is a continuous real valued orthonormal
generator (in fact, a scaling function of an MRA) with decaying property φ(t) =
O(|t|−1−ε) (ε > 0) for |t| large. Following Ref. 11, Janssen8 used Zak transform
to generalize Walter’s result to regular shifted sampling. Zhou and Sun13 found
a necessary and sufficient condition for a regular sampling expansion to hold on
V (φ) when V (φ) is a space of continuous functions generated by a frame generator
φ(t). Later noting that sinct does not satisfy the Walter’s decaying condition, Chen
and Itoh3 extended Walter’s work by removing too much restrictive conditions in
Ref. 11 like continuity and the decaying property on φ(t) when φ(t) is a Riesz
generator. Zhao, Liu, and Zhao12 extended further results in Ref. 3 by considering
frame generators. However, there are some gaps in the arguments of the proofs
of results in Refs. 3 and 12. In this work, we first find necessary and sufficient
conditions under which a regular and a regular shifted sampling expansion to hold
on V (φ) and then extend them into a single channeled sampling expansion.

In the following, we assume that φ(t) is a frame or a Riesz (stable) generator of
V (φ), that is, {φ(t − n) : n ∈ Z} is a frame or a Riesz basis of V (φ) so that

V (φ) =
{

f(t) =
∑
n∈Z

c(n)φ(t − n) : c = {c(n)}n∈Z ∈ l2
}

,

where f(t) is the L2-limit of
∑

n∈Z
c(n)φ(t − n). We are then concerned on the

problem: When is there a function S(t), called an interpolation generating function
of V (φ) for which the sampling expansion formula

f(t) =
∑
n∈Z

f(n)S(t − n), f ∈ V (φ)

holds in L2(R)-sense?
For any φ(t) in L2(R) and c = {c(n)}n∈Z in l2, let

ĉ∗(ξ) :=
∑
n∈Z

c(n) e−inξ : discrete Fourier transform of c;

(c ∗ φ)(t) :=
∑
n∈Z

c(n)φ(t − n) : discrete-continuous convolution product of c
and φ(t);

Gφ(ξ) :=
∑
n∈Z

|φ̂(ξ + 2nπ)|2, ξ ∈ R.
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Then

ĉ∗(ξ) = ĉ∗(ξ + 2π) ∈ L2[0, 2π] and ‖ĉ∗(ξ)‖2
L2[0,2π] = 2π‖c‖2 = 2π

∑
n∈Z

|c(n)|2;

Gφ(ξ) = Gφ(ξ + 2π) ∈ L1[0, 2π] and ‖Gφ(ξ)‖L1[0,2π] = ‖φ(t)‖2
L2(R).

Moreover, we have (cf. Ref. 4) that {φ(t − n) : n ∈ Z} is

• a Bessel sequence with a Bessel bound B > 0, i.e.∑
n∈Z

|〈ψ(t), φ(t − n)〉|2 ≤ B‖ψ‖2, ψ ∈ L2(R) (‖ψ‖ = ‖ψ‖L2(R))

if and only if

2πGφ(ξ) ≤ B a.e. on R; (1.1)

• a frame of V (φ) with frame bounds B ≥ A > 0, i.e.,

A‖ψ‖2 ≤
∑
n∈Z

|〈ψ(t), φ(t − n)〉|2 ≤ B‖ψ‖2, ψ ∈ V (φ)

if and only if

A ≤ 2πGφ(ξ) ≤ B a.e. on suppGφ; (1.2)

• a Riesz basis of V (φ) with Riesz bounds B ≥ A > 0, i.e.,

A‖c‖2 ≤ ‖(c ∗ φ)(t)‖2 ≤ B‖c‖2, c ∈ l2 (1.3)

if and only if

A ≤ 2πGφ(ξ) ≤ B a.e. on R; and (1.4)

• an orthonormal basis of V (φ), i.e., ‖(c ∗ φ)(t)‖2 = ‖c‖2, c ∈ l2 if and only if

2πGφ(ξ) = 1 a.e. on R.

Here we use supp f for any f(ξ) in L1
loc(R) to denote the support of f viewing

f as a distribution on R, that is,

R\suppf = {ξ ∈ R : f(·) = 0 a.e. on some neighborhood of ξ}.

2. Main Results

We begin with two simple lemmas, which play key roles in the following.

Lemma 2.1 (cf. Lemma 2 in Ref. 13). For any c = {c(n)}n∈Z and d =
{d(n)}n∈Z in l2, let

c ∗ d :=

{
(c ∗ d)(n) :=

∑
k∈Z

c(k)d(n − k)

}
n∈Z
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be the discrete convolution product of c and d. Then

ĉ∗(ξ)d̂∗(ξ) ∼
∑
n∈Z

(c ∗ d)(n)e−inξ, (2.1)

which means that
∑

n∈Z
(c ∗ d)(n)e−inξ is the Fourier series expansion of

ĉ∗(ξ)d̂∗(ξ) ∈ L1[0, 2π]. Moreover, c ∗ d ∈ c0 and∫ 2π

0

|ĉ∗(ξ)d̂∗(ξ)|2dξ = 2π
∑
n∈Z

|(c ∗ d)(n)|2. (2.2)

Proof. Since ĉ∗(ξ) and d̂∗(ξ) ∈ L2[0, 2π], ĉ∗(ξ)d̂∗(ξ) ∈ L1[0, 2π] of which the
Fourier series is

ĉ∗(ξ)d̂∗(ξ) ∼
∑
n∈Z

1
2π

〈ĉ∗(ξ)d̂∗(ξ), e−inξ〉L2[0,2π]e
−inξ

from which (2.1) follows. Then c ∗ d ∈ c0 by Riemann–Lebesgue lemma and (2.2)
is an immediate consequence of the Parseval’s identity.

In particular, (2.2) implies that ĉ∗(ξ)d̂∗(ξ) ∈ L2[0, 2π] if and only if c ∗ d ∈ l2.

Lemma 2.2. Let c = {c(n)}n∈Z ∈ l2, φ(t) ∈ L2(R), and assume that (c ∗ φ)(t)
converges in L2(R). If either c ∈ l1 or {φ(t−n) : n ∈ Z} is a Bessel sequence, then

F [c ∗ φ](ξ) = ĉ∗(ξ)φ̂(ξ). (2.3)

Proof. Since (c ∗ φ)(t) =
∑

n∈Z
c(n)φ(t − n) converges in L2(R),F [c ∗

φ](ξ) =
∑

n∈Z
(c(n)e−inξφ̂(ξ)) converges in L2(R), that is, ĉ∗n(ξ)φ̂(ξ) :=∑

|k|≤n c(k)e−ikξφ̂(ξ) converges to F [c ∗ φ](ξ) in L2(R). Hence to show (2.3), it

is enough to show that ĉ∗n(ξ)φ̂(ξ) converges to ĉ∗(ξ)φ̂(ξ) in L2(R) when either
c ∈ l1 or {φ(t − n) : n ∈ Z} is a Bessel sequence. Now

‖ĉ∗n(ξ)φ̂(ξ) − ĉ∗(ξ)φ̂(ξ)‖2 =
∫ ∞

−∞
|ĉ∗n(ξ) − ĉ∗(ξ)|2|φ̂(ξ)|2dξ

=
∫ 2π

0

|ĉ∗n(ξ) − ĉ∗(ξ)|2Gφ(ξ)dξ

≤



‖ĉ∗n(ξ) − ĉ∗(ξ)‖2

L∞[0,2π]

∫ 2π

0

Gφ(ξ)dξ

‖Gφ(ξ)‖L∞[0,2π]

∫ 2π

0

|ĉ∗n(ξ) − ĉ∗(ξ)|2dξ

so that limn→∞ ‖ĉ∗n(ξ)φ̂(ξ) − ĉ∗(ξ)φ̂(ξ)‖ = 0 provided that either c ∈ l1 so that
ĉ∗n(ξ) converges to ĉ∗(ξ) uniformly on [0, 2π] or {φ(t − n) : n ∈ Z} is a Bessel
sequence so that Gφ(ξ) ∈ L∞[0, 2π] by (1.1).
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In the following, we let φ(t) be a complex valued square integrable function on
R such that φ(t) is a frame or a Riesz generator of V (φ), that is, {φ(t − n) : n ∈
Z} is a frame or a Riesz basis of V (φ). We also assume {φ(n)}n∈Z ∈ l2 and set
φ̂∗(ξ) :=

∑
n∈Z

φ(n)e−inξ ∈ L2[0, 2π]. Then

V (φ) =

{
(c ∗ φ)(t) =

∑
k∈Z

c(k)φ(t − k) : c ∈ l2

}
,

where each f(t) := (c∗φ)(t) =
∑

k∈Z
c(k)φ(t−k) converges in L2(R). In particular,

for each n ∈ Z,
∑

k∈Z
c(k)φ(n − k) converges absolutely, which we may set to be

f(n) :=
∑
k∈Z

c(k)φ(n − k).

Note that as a shift invariant space, V (φ) contains S(t − n) for any n in Z if
S(t) is in V (φ). For a measurable set E in R, we let |E| be the Lebesgue measure
of E and χE(ξ) the characteristic function of E. For a measurable function f(t)
on R, let

‖f‖0 := sup
|E|=0

inf
R\E

|f(t)| and ‖f‖∞ := inf
|E|=0

sup
R\E

|f(t)|

be the essential infimum and essential supremum of f(t), respectively.

Theorem 2.1. Assume that φ(t) is a frame generator of V (φ) and {φ(n)}n∈Z ∈ l2.

(a) If there is S(t) in V (φ) such that {S(t − n) : n ∈ Z} is a Bessel sequence
(respectively, a frame) of V (φ) for which the sampling expansion formula

f(t) =
∑
n∈Z

f(n)S(t − n), f ∈ V (φ) (2.4)

holds in the L2 sense, then

supp φ̂ = supp Ŝ ⊂ supp Gφ = suppGS ⊂ supp φ̂∗ (2.5)

and there is a constant α > 0 (respectively, there are constants β ≥ α > 0) such
that

α ≤ |φ̂∗(ξ)| (respectively, α ≤ |φ̂∗(ξ)| ≤ β) a.e. on supp Gφ. (2.6)

Moreover

Ŝ(ξ) =
φ̂(ξ)

φ̂∗(ξ)
χsupp Gφ

(ξ) a.e. on R. (2.7)

(b) If {φ(n)}n∈Z ∈ l1 and there is S(t) ∈ V (φ) such that (2.4) holds, then (2.5), (2.7)
hold and

1

φ̂∗(ξ)
χsupp Gφ

(ξ) ∈ L2[0, 2π]. (2.8)
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Proof. (a) Assume that {S(t − n) : n ∈ Z} is a Bessel sequence of V (φ) with a
Bessel bound BS for which the sampling expansion formula (2.4) holds. Then

S(t) =
∑
n∈Z

a(n)φ(t − n) and φ(t) =
∑
n∈Z

φ(n)S(t − n)

for some a = {a(n)}n∈Z in l2. Then by Lemma 2.2,

Ŝ(ξ) = â∗(ξ)φ̂(ξ) and φ̂(ξ) = φ̂∗(ξ)Ŝ(ξ) (2.9)

and so

GS(ξ) = |â∗(ξ)|2Gφ(ξ) and Gφ(ξ) = |φ̂∗(ξ)|2GS(ξ), (2.10)

from which (2.5) follows immediately. We also have from (2.9)

Ŝ(ξ) = 0 a.e. on (supp φ̂)c and Ŝ(ξ) =
φ̂(ξ)
φ̂∗(ξ)

a.e. on supp φ̂∗(ξ)

so that (2.7) holds by (2.5). Now (2.10) implies

|φ̂∗(ξ)|2 =
Gφ(ξ)
GS(ξ)

a.e. on suppGφ (2.11)

so that Aφ

BS
≤ |φ̂∗(ξ)|2 a.e. on suppGφ, where (Aφ, Bφ) are frame bounds of

{φ(t− n) : n ∈ Z} [cf. (1.2)]. If {S(t− n) : n ∈ Z} is also a frame of V (φ) with
frame bounds (AS , BS), then (2.11) implies

Aφ

BS
≤ |φ̂∗(ξ)|2 ≤ Bφ

AS
a.e. on suppGφ.

Hence (2.6) holds.
(b) Assume {φ(n)}n∈Z ∈ l1 and (2.4) holds on V (φ) for some S(t) ∈ V (φ). Then

(2.5) and (2.7) hold by the same arguments as in the proof of (a). We now have
from (2.7) and χsuppGφ

(ξ) = χsuppGφ
(ξ + 2π),

∞ >

∫ ∞

−∞
|Ŝ(ξ)|2dξ =

∫ ∞

−∞

∣∣∣∣∣ φ̂(ξ)
φ̂∗(ξ)

∣∣∣∣∣
2

χsupp Gφ
(ξ)dξ

=
∫ 2π

0

Gφ(ξ)

|φ̂∗(ξ)|2 χsupp Gφ
(ξ)dξ

≥ Aφ

2π

∫ 2π

0

1
|φ̂∗(ξ)|2 χsupp Gφ

(ξ)dξ

so that (2.8) holds.
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Theorem 2.1 gives some necessary conditions for the sampling expansion formula
(2.4) to hold. Conversely, we have:

Theorem 2.2. Assume that φ(t) is a frame generator of V (φ) and {φ(n)}n∈Z ∈ l2.
If there are constants β ≥ α > 0 such that

α ≤ |φ̂∗(ξ)| ≤ β a.e. on supp Gφ, (2.12)

then there is a frame generator S(t) of V (φ) for which

f(t) =
∑
n∈Z

f(n)S(t − n) (2.13)

holds for any f(t) = (c ∗ φ)(t) ∈ V (φ) satisfying

ĉ∗(ξ)φ̂∗(ξ) ∈ L2[0, 2π]. (2.14)

If moreover |φ̂∗(ξ)| ≤ β a.e. on R, then (2.4)–(2.7) hold and {f(n)}n∈Z ∈ l2 for
any f ∈ V (φ).

Proof. Inequality (2.12) implies that 1

φ̂∗(ξ)
χsupp Gφ

(ξ) ∈ L∞[0, 2π] ⊂ L2[0, 2π] so
that

1
φ̂∗(ξ)

χsuppGφ
(ξ) =

∑
n∈Z

a(n)e−inξ = â∗(ξ)

for some a ={a(n)}n∈Z in l2.
Define Ŝ(ξ) by (2.7), that is,

Ŝ(ξ) =
φ̂(ξ)
φ̂∗(ξ)

χsupp Gφ
(ξ) = â∗(ξ)φ̂(ξ).

Then ∫ ∞

−∞
|Ŝ(ξ)|2dξ =

∫ 2π

0

|â∗(ξ)|2Gφ(ξ)dξ ≤ ‖Gφ(ξ)‖∞
∫ 2π

0

|â∗(ξ)|2dξ < ∞

so that Ŝ(ξ) ∈ L2(R). Since

Ŝ(ξ) = â∗(ξ)φ̂(ξ) =
∑
n∈Z

(a(n)e−inξφ̂(ξ)) (2.15)

by Lemma 2.2, we have by Fourier inversion

S(t) =
∑
n∈Z

a(n)φ(t − n) ∈ V (φ).
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Now (2.15) implies supp Ŝ ⊂ supp φ̂ ⊂ supp Gφ so that

φ̂(ξ) = φ̂∗(ξ)Ŝ(ξ) a.e. on R (2.16)

since (2.16) holds on supp Gφ by (2.7) and φ̂(ξ) = Ŝ(ξ) = 0 a.e. on (supp Gφ)c.
Then as in the proof of Theorem 2.1, (2.10) holds so that

GS(ξ) =
Gφ(ξ)
|φ̂∗(ξ)|2 on supp φ̂∗ ⊃ supp Gφ = suppGS . (2.17)

Hence, we have by (2.12) and (2.17)

Aφ

2πβ2
≤ GS(ξ) ≤ Bφ

2πα2
a.e. on suppGS (2.18)

so that {S(t − n) : n ∈ Z} is at least a Bessel sequence of V (φ). Now for any
f(t) = (c ∗ φ)(t) in V (φ) with c = {c(n)}n∈Z in l2,

f̂(ξ) = ĉ∗(ξ)φ̂(ξ) = ĉ∗(ξ)φ̂∗(ξ)Ŝ(ξ) (2.19)

by (2.16). If ĉ∗(ξ)φ̂∗(ξ) ∈ L2[0, 2π], then {f(n)}n∈Z ∈ l2 and

ĉ∗(ξ)φ̂∗(ξ) = f̂∗(ξ) =
∑
n∈Z

f(n)e−inξ

in L2[0, 2π] by Lemma 2.1. Hence, we get

f̂(ξ) = f̂∗(ξ)Ŝ(ξ) =
∑
n∈Z

(f(n)e−inξŜ(ξ)) (2.20)

by Lemma 2.2 since {S(t − n) : n ∈ Z} is a Bessel sequence. Then we have (2.13)
by taking Fourier inversion on (2.20). On the other hand, we also have from (2.19)

f̂(ξ) = ĉ∗(ξ)φ̂∗(ξ)Ŝ(ξ) = ĉ∗(ξ)φ̂∗(ξ)χsupp Gφ
(ξ)Ŝ(ξ)

since supp Ŝ ⊂ supp Gφ. Let φ̂∗(ξ)χsupp Gφ
(ξ) = d̂∗(ξ) =

∑
n∈Z

d(n)e−inξ be the
Fourier series expansion of φ̂∗(ξ)χsupp Gφ

(ξ) ∈ L∞[0, 2π] ⊂ L2[0, 2π]. Then

ĉ∗(ξ)φ̂∗(ξ)χsupp Gφ
(ξ) = ĉ∗(ξ)d̂∗(ξ) =

∑
n∈Z

(c ∗ d)(n)e−inξ

so that

f̂(ξ) =
∑
n∈Z

(c ∗d)(n)e−inξ Ŝ(ξ) and so f(t) =
∑
n∈Z

(c ∗d)(n)S(t− n), f ∈ V (φ).

Hence V (S) = V (φ) so that (2.18) implies {S(t − n) : n ∈ Z} is a frame of V (φ).
Finally, assume

αχsupp Gφ
(ξ) ≤ |φ̂∗(ξ)| ≤ β a.e. on R. (2.21)



August 30, 2007 16:52 WSPC/181-IJWMIP 00203

Channeled Sampling in Shift Invariant Spaces 761

Then (2.14) holds for any c = {c(n)}n∈Z in l2 since φ̂∗(ξ) ∈ L∞[0, 2π]. Hence
{f(n)}n∈Z ∈ l2 for any f ∈ V (φ) and (2.13) holds on V (φ), that is, (2.4) holds.
(2.5)–(2.7) then follows from (2.4) by Theorem 2.1.

Corollary 2.1. If φ(t) is a frame generator of V (φ), {φ(n)}n∈Z ∈ l1 and φ̂∗(ξ) �= 0
on supp Gφ, then there is a frame generator S(t)of V (φ) for which (2.4)–(2.7) hold.

Proof. If {φ(n)}n∈Z ∈ l1 and φ̂∗(ξ) �= 0 on supp Gφ, then φ̂∗(ξ) ∈ C(R) satisfies
the condition (2.21) so that the conclusion follows from Theorem 2.2.

In Ref. 12, the authors assumed that φ(t) is a frame generator of V (φ) and
{φ(n)}n∈Z ∈ l2 and then claimed (see Theorems 1 and 2 in Ref. 12) that there
is S(t) in V (φ) for which the sampling expansion formula (2.4) holds if and only
if the condition (2.8) is satisfied. In particular, in Ref. 12, the authors assumed
nothing on the sequence {S(t − n) : n ∈ Z}. However arguments in the proof of
Theorems 1 and 2 in Ref. 12 have some gaps. Assume first that (2.4) holds. Then
φ(t) =

∑
n∈Z

φ(n)S(t − n), which needs not imply φ̂(ξ) = φ̂∗(ξ)Ŝ(ξ) [see Eq. (2)
or (7) in Ref. 12] in general unless either {S(t − n) : n ∈ Z} is at least a Bessel
sequence or {φ(n)}n∈Z ∈ l1 [cf. Lemma 2.2]. Conversely if the condition (2.8),
instead of the condition (2.12), holds in Theorem 2.2, then we still have (2.15)–
(2.17) and (2.19). However ĉ∗(ξ)φ̂∗(ξ) may not be in L2[0, 2π] so that (2.20) may
not hold and {S(t − n) : n ∈ Z} may not be a Bessel sequence in general. Hence,
contrary to the claim in (Theorem 2, Ref. 12), we cannot be sure if (2.4) holds
assuming only the condition (2.8).

Remark 2.1. Assume that φ(t) is a continuous frame generator satisfying sup
R∑

n∈Z
|φ(t − n)|2 < ∞. Then Zhou and Sun show (see Theorem 1 in Ref. 13) that

there is a frame {S(t − n) : n ∈ Z} of V (φ) for which the sampling expansion
formula (2.4) holds on V (φ) if and only if there are constants β ≥ α > 0 such that

αχsupp Gφ
(ξ) ≤ |φ̂∗(ξ)| ≤ βχsupp Gφ

(ξ) a.e. on R.

Note that in this case, V (φ) is a reproducing kernel Hilbert space, V (φ) ⊂ C(R),
and the sampling series

∑
n∈Z

f(n)S(t − n) converges not only in L2(R) but also
uniformly on R to f(t).

In the case of Riesz basis setting, we have:

Lemma 2.3. Assume that φ(t) is a Riesz generator of V (φ) and {φ(n)}n∈Z ∈ l2.
Assume that there is S(t) ∈ V (φ) for which the sampling expansion formula (2.4)
holds. If either {φ(n)}n∈Z ∈ l1 or {S(t − n) : n ∈ Z} is a Bessel sequence, then
φ̂∗(ξ)−1 ∈ L2[0, 2π] and

supp φ̂ = supp Ŝ ⊆ supp Gφ = suppGS = supp φ̂∗ = R; (2.22)

Ŝ(ξ) =
φ̂(ξ)

φ̂∗(ξ)
a.e. on R. (2.23)
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Proof. By the same arguments as in the proof of Theorem 2.1, (2.9) and (2.5)
hold. Since φ(t) is a Riesz generator, supp Gφ = R (cf. (1.4)). Hence (2.22) comes
from (2.5) and then (2.23) comes from (2.9) and (2.22).

Theorem 2.3. Assume that φ(t) is a frame generator of V (φ) and {φ(n)}n∈Z ∈ l2.
Then there is a Riesz generator S(t) of V (φ) for which (2.4) holds if and only if
φ(t) is also a Riesz generator of V (φ) and

0 < ‖φ̂∗(ξ)‖0 ≤ ‖φ̂∗(ξ)‖∞ < ∞. (2.24)

Furthermore in this case, we have, in addition to (2.22) and (2.23);

S(t) is cardinal, i.e. S(n) = δ0,n for n ∈ Z. (2.25)

Proof. First assume that (2.4) holds on V (φ) for some Riesz generator S(t) of
V (φ). Then we have (2.9), (2.10) and so (2.5). Since suppGφ = suppGS = R,
{φ(t − n) : n ∈ Z} must be a Riesz basis of V (φ) so that (2.22) and (2.23) hold by
Lemma 2.3. Now (2.24) comes from (2.11): |φ̂∗(ξ)|2 = Gφ(ξ)

GS(ξ) a.e. on R and (2.25)
comes immediately from S(t) =

∑
n∈Z

S(n)S(t − n).

Conversely, assume that φ(t) is a Riesz generator of V (φ) and (2.24) hold. Define
Ŝ(ξ) by (2.23). Then Ŝ(ξ) = â∗(ξ)φ̂(ξ) ∈ L2(R), where â∗(ξ) = φ̂∗(ξ)−1 ∈ L∞[0, 2π]
so that S(t) = (a ∗ φ)(t) ∈ V (φ). The rest of the proof is the same as the one in
Theorem 2.2.

Remark 2.2. Let φ(t) be a Riesz generator which is piecewise continuous on R

and φ(t) = O(|t|−1/2−ε) (ε > 0) for |t| large. Then {φ(n)}n∈Z ∈ l2 and M :=
sup

R

∑
n∈Z

|φ(t − n)|2 < ∞. Hence, for any c in l2, (c ∗ φ)(t) =
∑

n∈Z
c(n)φ(t −

n) converges not only in L2(R) but also absolutely and locally uniformly on R.
Therefore, we have

V (φ) = {f(t) = (c ∗ φ)(t) : c ∈ l2},
where f(t) is the pointwise (and also L2-) limit of (c ∗ φ)(t). Then V (φ) is a closed
subspace of L2(R) since if f(t) = (c ∗ φ)(t) ∈ V (φ) is such that ‖f(t)‖ = 0, i.e.∑

n∈Z
c(n)φ(t − n) = 0 in L2(R), then c(n) = 0 for all n in Z so f(t) = 0 on R.

Moreover V (φ) is a reproducing kernel Hilbert space since for any f(t) = (c∗φ)(t) ∈
V (φ) and any t in R

|f(t)| ≤ ‖c‖
√

M ≤ M√
A
‖f‖ [cf. (1.3)].

Let k(t, s) =
∑

n∈Z
φ(s − n)φ̃(t − n) be the reproducing kernel of V (φ), where

{φ̃(t − n) : n ∈ Z} is the dual Riesz basis of {φ(t − n) : n ∈ Z}. Then

‖k(·, s)‖2 =

∥∥∥∥∥
∑
n∈Z

φ(s − n)φ̃(· − n)

∥∥∥∥∥
2

≤ B̃
∑
n∈Z

|φ(s − n)|2 ≤ B̃M,
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where B̃ ≥ Ã > 0 are Riesz bounds of {φ̃(t − n) : n ∈ Z}. Therefore, assuming
further that the condition (2.24) holds, the sampling series (2.4) converges not only
in L2(R) but also absolutely and uniformly on R.

Corollary 2.2. Assume that φ(t) is a frame generator of V (φ) and {φ(n)}n∈Z ∈ l1.
Then there is a Riesz generator S(t) of V (φ) for which (2.4) holds if and only if
φ(t) is also a Riesz generator of V (φ) and φ̂∗(ξ) �= 0 on [0, 2π].

Proof. If {φ(n)}n∈Z ∈ l1, then φ̂∗(ξ) = φ̂∗(ξ + 2π) ∈ C[0, 2π] so that

‖φ̂∗(ξ)‖0 = min
[0,2π]

|φ̂∗(ξ)| and ‖φ̂∗(ξ)‖∞ = max
[0,2π]

|φ̂∗(ξ)|.

Hence the condition (2.24) is equivalent to φ̂∗(ξ) �= 0 on [0, 2π]. Therefore, the
conclusion follows from Theorem 2.3.

In Ref. 11, Walter assumed that φ(t) is a continuous real-valued orthonormal gen-
erator with φ(t) = O(|t|−1−s) (s > 0) for |t| large. Then {φ(n)}n∈Z ∈ l1 so that the
main Theorem of Ref. 11 is a special case of Corollary 2.2.

In Ref. 3, Chen and Itoh claimed (cf. Theorem 1 in Ref. 3) that assuming φ(t)
is a Riesz generator of V (φ) with {φ(n)}n∈Z ∈ l2, (2.4) holds for some S(t) in V (φ)
if and only if φ̂∗(ξ)−1 ∈ L2[0, 2π]. However, as in Theorem 2 from Ref. 12, there
are some gaps in the proof of Theorem 1 in Ref. 3, which are filled and extended
by Theorem 2.3.

As it was done in Refs. 3 and 12 (see also Ref. 8), we can extend Theorems 2.1
and 2.2 to the regular shifted sampling, Theorem 2.4 below, which also corrects and
extends Theorem 2 in Ref. 3 and Theorem 3 in Ref. 12.

We now assume that φ(t) is a complex valued square integrable function on R

such that φ(t) is a frame generator and {φ(σ + n)}n∈Z ∈ l2 for some σ in [0, 1).
Then for any f(t) =

∑
n∈Z

c(n)φ(t − n) in V (φ) with c = {c(n)}n∈Z in l2,

f(σ + n) :=
∑
k∈Z

c(k)φ(σ + n − k)

converges absolutely for each n in Z. Let

Zφ(t, ξ) :=
∑
n∈Z

φ(t + n)e−inξ

be the Zak transform of φ(t) (cf. Ref. 8).

Theorem 2.4. Assume that φ(t) is a frame generator of V (φ) and {φ(σ+n)}n∈Z ∈
l2 for some σ in [0, 1).
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(a) If there is a frame generator Sσ(t) of V (φ) for which the regular shifted sampling
expansion formula

f(t) =
∑
n∈Z

f(σ + n)Sσ(t − n), f ∈ V (φ) (2.26)

holds, then there are constants β ≥ α > 0 such that

α ≤ |Zφ(σ, ξ)| ≤ β a.e. on supp Gφ;

supp φ̂ = supp Ŝσ ⊂ supp Gφ = suppGSσ ⊂ supp Zφ(σ, ξ);

and

Ŝσ(ξ) =
φ̂(ξ)

Zφ(σ, ξ)
χsuppGφ

(ξ). (2.27)

(b) Conversely, if there are constants β ≥ α > 0 such that

αχsupp Gφ
(ξ) ≤ |Zφ(σ, ξ)| ≤ β a.e. on R

then there is a frame generator Sσ(t) of V (φ) for which (2.26) and (2.27) hold.
(c) There is a Riesz generator Sσ(t) of V (φ) for which (2.26) holds if and only if

φ(t) is a Riesz generator and

0 < ‖Zφ(σ, ξ)‖0 ≤ ‖Zφ(σ, ξ)‖∞ < ∞.

Furthermore, in this case, we have Sσ(σ + n) = δ0,n for n in Z and

Ŝσ(ξ) =
φ̂(ξ)

Zφ(σ, ξ)
a.e. on R.

Proof. Proofs of (a), (b) and (c) are essentially the same as the ones in Theo-
rems 2.1 and 2.2 respectively.

Corollary 2.1 can be extended similarly as:

Corollary 2.3. If φ(t) is a frame generator of V (φ), {φ(σ + n)}n∈Z ∈ l1, and
Zφ(σ, ξ) �= 0 on supp Gφ, then there is a frame generator Sσ(t) of V (φ) for which
(2.26) and (2.27) hold.

Example 2.1. The Shannon function φ(t) = sin πt/πt is a continuous real-valued
Riesz (in fact orthonormal) generator and {φ(n)}n∈Z = {δ0,n}n∈Z. Since φ̂∗(ξ) = 1
on [0, 2π] but |φ(t)| = O(|t|−1) for |t| large so that φ(t) does not satisfy the Walter’s
decaying condition, the WSK sampling theorem is not covered by the sampling
theorem in Ref. 11 but follows from Remark 2.2 and Corollary 2.2.
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3. Single Channel Sampling

Channeled sampling expansion recovers a signal via discrete sample values taken
from one or more channeled (output) signals, which are obtained by passing the
original (input) signal through a linear time invariant system of pre-filters. Chan-
neled sampling goes back to the work by Shannon,10 where sample values are taken
from the original signal and its derivative. For general discussion of channeled sam-
pling on Paley–Wiener spaces, we refer to Refs. 6, 7 and references therein.

Here we consider a single channel sampling on shift invariant spaces. Let φ(t) ∈
L2(R) be a frame generator and H(ξ) ∈ L∞(supp(φ̂)) a transfer function (or a
pre-filter). Let

C(f)(t) := F−1(H(ξ)f̂(ξ)), f ∈ V (φ).

Then C(f)(t) ∈ L2(R) for any f ∈ V (φ). Note that if f̂(ξ) ∈ L1(R) or H(ξ) ∈
L2(suppφ̂) , then C(f)(t) ∈ C(R) ∩ L2(R).

Lemma 3.1. If φ(t) ∈ L2(R) is such that {φ(t − n) : n ∈ Z} is a Bessel sequence
and H(ξ) ∈ L∞(supp(φ̂)), then {C(φ)(t − n) : n ∈ Z} is also a Bessel sequence.

Proof. Let B > 0 be a Bessel bound of {φ(t − n) : n ∈ Z}. Then

2πGC(φ)(ξ) = 2π
∑
n∈Z

|H(ξ + 2nπ)φ̂(ξ + 2nπ)|2

≤ ‖H(ξ)χsuppφ̂(ξ)‖2
∞2πGφ(ξ) ≤ ‖H(ξ)χsuppφ̂(ξ)‖2

∞B a.e. on R

so that {C(φ)(t − n) : n ∈ Z} is also a Bessel sequence (cf. (1.1)).

In the following, we assume that φ(t) ∈ L2(R) is a frame generator and
H(ξ) ∈ L∞(supp(φ̂)) is a transfer function such that either H(ξ) ∈ L2(supp(φ̂))
or φ̂(ξ) ∈ L1(R). Then {C(φ)(t − n) : n ∈ Z} is a Bessel sequence by Lemma 3.1
and C(φ)(t) ∈ C(R) ∩ L2(R) since H(ξ)φ̂(ξ) ∈ L1(R). We assume further that
{C(φ)(n)}n∈Z ∈ l2. Then for any f(t) = (c ∗ φ)(t) ∈ V (φ) with c = {cn}n∈Z ∈ l2,

C(f)(t) = F−1(H(ξ)f̂(ξ)) = F−1(ĉ∗(ξ)H(ξ)φ̂(ξ)) = (c ∗ C(φ))(t)

by Lemma 2.2 since {C(φ)(t − n) : n ∈ Z} is a Bessel sequence. Moreover for any
n in Z

C(f)(n) :=
∑
k∈Z

c(k)C(φ)(n − k)

converges absolutely and lim|n|→∞(c∗C(φ))(n) = 0 (cf. Lemma 2.1). We then have
the following, whose proof is essentially the same as the one in Theorem 2.3.
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Theorem 3.1. Let φ(t) ∈ L2(R) be a frame generator and H(ξ) ∈ L∞(supp(φ̂))
a transfer function such that either H(ξ) ∈ L2(supp(φ̂)) or φ̂(ξ) ∈ L1(R) ∩ L2(R).
Assume {C(φ)(n)}n∈Z ∈ l2. Then there is a Riesz generator S(t) of V (φ) for which
the channeled sampling expansion formula

f(t) =
∑
n∈Z

C(f)(n)S(t − n), f ∈ V (φ)

holds if and only if φ(t) is a Riesz generator of V (φ) and

0 < ‖Ĉ(φ)
∗
(ξ)‖0 ≤ ‖Ĉ(φ)

∗
(ξ)‖∞ < ∞.

Furthermore in this case, C(S)(t) is interpolatory, i.e. C(S)(n) = δ0,n for n ∈ Z

and

Ŝ(ξ) =
φ̂(ξ)

Ĉ(φ)
∗
(ξ)

a.e. on R.

Example 3.1. Let φ(t) = tχ[0,1)(t) + (2 − t)χ[1,2)(t) be the cardinal B-spline of
degree 1. Then φ(t) is a continuous Riesz generator (cf. Ref. 5) and

φ̂(ξ) =
1√
2π

(
1 − e−iξ

iξ

)2

∈ L1(R) ∩ L2(R).

Take a transfer function H(ξ) = eiσξ with 0 ≤ σ < 1. Then C(φ)(t) = φ(t + σ)
so that

C(φ)(σ) = σ, C(φ)(σ + 1) = 1 − σ, and C(φ)(σ + n) = 0 for n = 0, 1.

Therefore Ĉ(φ)
∗
(ξ) = Zφ(σ, ξ) = σ + (1 − σ)e−iξ so that ‖Ĉ(φ)

∗
(ξ)‖0= |2σ − 1|

and ‖Ĉ(φ)
∗
(ξ)‖∞ = 1. Hence, by Theorem 3.1, for any σ ∈ [0, 1)\{ 1

2}, there is
a Riesz generator S(t) of V (φ) for which we have the sampling expansion f(t) =∑

n f(n+σ)S(t−n) on V (φ), which converges not only in L2(R) but also uniformly
on R since sup

R

∑
n∈Z

|φ(t − n)|2 < ∞.

Example 3.2. Let φ(t) = sinct so that φ̂(ξ) = 1√
2π

χ[−π,π](ξ). Then φ(t) is an
orthonormal generator of V (φ) = PWπ. Take a measurable function H(ξ) on R

such that H(ξ) and H(ξ)−1 belong to L∞[−π, π]. Then H(ξ) ∈ L2[−π, π] and
C(φ)(t) = F−1( 1√

2π
H(ξ)χ[−π,π](ξ))(t) ∈ PWπ so that

∑
n∈Z

|C(φ)(n)|2 = ‖C(φ)(t)‖2 =
1
2π

‖H(ξ)‖2
L∞[−π,π] < ∞,

that is, {C(φ)(n)}n∈Z ∈ l2. On the other hand, by the Poisson summation formula,

Ĉ(φ)
∗
(ξ) =

√
2π

∑
n∈Z

Ĉ(φ)(ξ + 2nπ) = H(ξ) on [−π, π]. Hence by Theorem 3.1,
there is a Riesz generator S(t) = F−1( 1√

2πH(ξ)
χ[−π,π](ξ)) of PWπ for which we

have the sampling expansion f(t) =
∑

n C(f)(n)S(t−n) on PWπ , which converges
not only in L2(R) but also uniformly on R. It is exactly the single channel sampling
introduced in Ref. 6.
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