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Abstract

Let H be a separable Hilbert space and k(t) an H-valued function on a
subset 
 of the real line R such that fk(t) j t 2 
g is total in H . Then

ffx := hx; k(t)iH jx 2 Hg

becomes a reproducing kernel Hilbert space (RKHS) in a natural way. Here,
we develop a sampling formula for functions in this RKHS, which gener-
alizes the well-known celebrated Whittaker-Shannon-Kotel'nikov sampling
formula in the Paley-Wiener space of band-limited signals. To be more
precise, we develop a multi-channel sampling formula in which each chan-
nel is given a rather arbitrary sampling rate. We also discuss stability and
oversampling.
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1 Introduction

Let f(t) be a band-limited signal with band region [��; �], that is, a square-
integrable function on R of which the Fourier transform f̂ vanishes outside
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[��; �]. Then f can be recovered by its uniformly spaced discrete values as

f(t) =

1X
n=�1

f (n)
sin�(t� n)

�(t� n)
;

which converges absolutely and uniformly over R. This series is called the cardi-
nal series or the Whittaker-Shannon-Kotel'nikov (WSK) sampling series. This
formula tells us that once we know the values of a band-limited signal f at cer-
tain discrete points, we can recover f completely. In 1941 Hardy [4] recognized
that this cardinal series is actually an orthogonal expansion.

WSK sampling series was generalized by Kramer [8] in 1957 as follows: Let
k(�; t) be a kernel on I � 
, where I is a bounded interval and 
 is a subset of
R. Assume that k(�; t) 2 L2(I) for each t in 
 and there are points ftngn2Z in

 such that fk(�; tn)gn2Z is an orthonormal basis of L2(I). Then any f(t) =R
I F (�)k(�; t)d� with F (�) 2 L2(I) can be expressed as a sampling series

f(t) =
X
n2Z

f(tn)

Z
I
k(�; t) k(�; tn) d�;

which converges absolutely and uniformly over the subsetD on which kk(�; t)kL2(I)
is bounded. While WSK sampling series treats sample values taken at uniformly
spaced points, Kramer's series may take sample values at nonuniformly spaced
points.

Recently, A. G. Garcia and A. Portal [3] extended the WSK and Kramer
sampling formulas further to a more general setting using a suitable abstract
Hilbert space valued kernel.

On the other hand, Papoulis [10] (see also [7]) introduced a multi-channel
sampling formula for band-limited signals in which a signal is recovered from
discrete sample values of several transformed versions of the signal.

In this work, following the setting introduced by Garcia and Portal [3], we
�rst extend and modify Theorem 1 in [3] into a single channel sampling formula
(see Theorem 3.2 below), which is more transparent. It is then easy to ex-
tend it to a multi-channel sampling formula in which each channel can be given
rather arbitrary sampling rate. Comparing two-channel sampling formula, The-
orem 3 in [3] and our multi-channel sampling formula, Theorem 3.3, reveals the
advantage of modi�cation made in Theorem 3.2. Finally, we also discuss the
oversampling and recovery of missing samples in the single-channel sampling
formula.
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2 Preliminaries

For f(t) 2 L2(R), we let

F(f)(�) = f̂(�) :=
1p
2�

Z 1

�1
f(t) e�i�t dt

be the Fourier transform of f(t) and

f(t) = F�1(f̂)(t) :=
1p
2�

Z 1

�1
f̂(�) ei�t d�

the inverse Fourier transform of f̂(�).

De�nition 2.1. For any w > 0, the Paley-Wiener space, PW�w, is de�ned to
be

PW�w := ff j f 2 L2(R); supp bf 2 [��w; �w]g:
Note that PW�w is isometrically isomorphic onto L2[��w; �w] under the

Fourier transform.
We call a basis f'ng of a separable Hilbert space H to be an unconditional

basis of H if for every f 2 H the expansion f =
P

cn(f)'n still converges to f
after any permutation of its terms. We also call a basis f'ng to be a Riesz basis
of H if there is a linear isomorphism T from H onto H such that T (en) = 'n
where feng is an orthonormal basis for H. Then any Riesz basis of H is an
unconditional basis of H but not conversely in general.

De�nition 2.2. [12] A Hilbert space H consisting of complex-valued functions
de�ned on a set D(6= ;) is called a reproducing kernel Hilbert space (RKHS in
short) if there exists a function k(s; t) on D �D satisfying

(1) k(�; t) 2 H for each t 2 D;

(2) hf(s); k(s; t)iH = f(t) for all f 2 H and all t 2 D.

Such a function k(s; t) is called a reproducing kernel of H.

We need some properties of RKHS's.

Proposition 2.3. [5] Let H be a Hilbert space as in De�nition 2.2. Then we
have:

(a) H is an RKHS if and only if the point evaluation map lt(f) := f(t) is a
bounded linear functional on H for each t 2 D;

(b) an RKHS H has a unique reproducing kernel;

(c) the convergence of a sequence in an RKHS H implies its uniform conver-
gence over any subset of D on which k(t; t) is bounded.

For example, the Paley-Wiener space PW�w is an RKHS with the reproduc-

ing kernel k(s; t) = w
sin�w(s� t)

�w(s� t)
.
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3 Multi-channel sampling

Let H be a separable Hilbert space and k : 
 �! H be an H-valued function
on a subset 
 of the real line R. De�ne a linear operator T on H by

T (x) = fx := hx; k(t)iH ; t 2 
:

We call k(t) the kernel of the linear operator T .

Lemma 3.1. ([3])

(a) T is one-to-one if and only if fk(t) j t 2 
g is total in H.

Assume fk(t) j t 2 
g is total in H so that T : H �! T (H) is a bijection. Then

(b) hT (x); T (y)iT (H) := hx; yiH de�nes an inner product on T (H) with which
T (H) is a Hilbert space and T : H �! T (H) is unitary. Moreover, T (H)
becomes an RKHS with the reproducing kernel k(s; t) := hk(t); k(s)iH .

Proof. (a) T is one-to-one if and only if fk(t) j t 2 
g? = f0g if and only if
spanfk(t) j t 2 
g = H, that is, fk(t) j t 2 
g is total in H.

(b) It is trivial that hT (x); T (y)iT (H) := hx; yiH de�nes an inner product on
T (H) with which T : H �! T (H) is unitary. Now for any f(�) = hx; k(�)iH in
T (H) and t 2 
,

jf(t)j = jhx; k(t)iH j � kxkHkk(t)kH = kfkT (H)kk(t)kH
so that lt(f) = f(t) is a bounded linear functional on T (H). Hence, T (H) is an
RKHS by Proposition 2.3. Since

f(t) = hx; k(t)iH = hT (x)(s); T (k(t))(s)iT (H) = hf(s); hk(t); k(s)iH iT (H);

the reproducing kernel k(s; t) of T (H) is hk(t); k(s)iH .
First, we develop a single-channel sampling formula. Let ~k : 
 �! H be

another H-valued function on 
 and eT the linear operator on H de�ned byeT (x)(t) = ~fx(t) = hx; ~k(t)iH :
Theorem 3.2. If KerT � Ker eT and there exists a sequence ftngn2Z in 
 such
that f~k(tn)gn2Z is a basis of H, then T is one-to-one so that T (H) becomes an
RKHS under the inner product hT (x); T (y)iT (H) := hx; yiH . Moreover, there is
a basis fSngn2Z of T (H) such that, for any fx 2 T (H) the sampling expansion

fx(t) =
X
n

~fx(tn)Sn(t); t 2 
 (3.1)

holds. The convergence of the series is not only in T (H) but also uniform over
any subset on which kk(t)kH is bounded.
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Proof. Assume eT (x)(t) = hx; ~k(t)i = 0 on 
. Then hx; ~k(tn)i = 0 for any n 2 Z
so that x = 0 since f~k(tn)gn2Z is a basis of H. Hence, KerT = Ker eT = f0g
and T (H) becomes an RKHS as in Lemma3.1 (b).

Let fxngn2Z = f~k(tn)gn2Z and fx�ngn2Z be its dual. Then fT (xn)g and
fT (x�n)g are bases of T (H), which are dual each other since T is unitary.

Expanding any fx = T (x) in T (H) via the basis fSngn2Z = fT (x�n)g gives

fx(t) =
X
n2Z

hT (x); T (xn)iT (H)Sn(t) =
X
n2Z

hx; xniH Sn(t)

=
X
n2Z

hx; ~k(tn)iH Sn(t) =
X
n2Z

~fx(tn)Sn(t):

Uniform convergence of the series (3.1) follows from Proposition 2.3 (c).

The single channel sampling expansion (3.1) may not converge absolutely
unless fxngn2Z is an unconditional basis and may not be stable. However, if
fxngn2Z is an unconditional basis and supn kx�nk < 1, then (3.1) is a stable
sampling expansion, which converges absolutely on 
. In fact, if then, fSngn2Z
becomes an unconditional basis of T (H) and supn kSnk = supn kx�nk <1. Since

f 1

kSnkSngn2Z is a Riesz basis of T (H) by the K�othe-Toeplitz Theorem [9], there

is a constant B > 0 such that

kfxk2T (H) � B
X
n2Z

j ~fx(tn)j2kSnk2 � (sup
n
kSnk)2B

X
n2Z

j ~fx(tn)j2; fx 2 T (H):

Furthermore, the sampling series expansion (3.1) remains valid when f~k(tn)
gn2Z is not a basis but a frame of H. When ~k(t) = k(t) on 
 so that T =
~T , Theorem 3.2 is essentially Theorem 1 in [3]. However, Theorem 3.2 might
have some advantage over Theorem 1 in [3]. While Theorem 1 in [3] requires
�rst the expansion of the kernel k(t) in terms of a given basis of H and then
the interpolatory condition for the expansion coeÆcients at some points in 
,
Theorem 3.2 simply requires points in 
, whose values under k(�) form a basis
of H.

Now, we can extend Theorem3.2 naturally to a multi-channel setting. Let
fkigNi=1 be N H-valued functions on 
 and fTigNi=1 linear operators onH de�ned
by

Ti(x) = f ix := hx; ki(t)iH ; x 2 H:

Theorem 3.3. (Asymmetric nonuniform multi-channel sampling formula) If
KerT � \Ni=1KerTi, and there exist points fti;n j 1 � i � N;n 2 Zg � 
 and

constants f�ji;n j 1 � i � N; 1 � j � M and n 2 Zg for some integer M � 1

such that fPN
i=1 �

j
i;nki(ti;n) j 1 � j � M and n 2 Zg is an unconditional basis
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of H, then there is a basis fSj;n j 1 � j � M and n 2 Zg of T (H) such that for
any fx = T (x) 2 T (H);

fx(t) =
X
n2Z

MX
j=1

f�j1;n f1x(t1;n) + �j2;n f
2
x(t2;n) + � � �+ �jN;n f

N
x (tN;n)gSj;n(t)

(3.2)

which converges in T (H). Moreover, the series (3.2) converges absolutely and
uniformly on any subset of 
 over which kk(t)kH is bounded.

Proof. First, we prove that T is one-to-one. Suppose T (x)(t) = hx; k(t)i = 0
for all t 2 
. Then, hx; ki(t)i = 0, 1 � i � N on 
 since KerT � \Ni=1KerTi.

In particular, hx;PN
i=1 �

j
i;nki(ti;n)i = 0 for all 1 � j � M and n 2 Z so that

x = 0 since fPN
i=1 �

j
i;nki(ti;n) j 1 � j �M andn 2 Zg is a basis of H. Therefore,

T : H �! T (H) is a bijection and T (H) becomes an RKHS under the inner
product hT (x); T (y)iT (H) := hx; yiH by Lemma 3.1.

Let xjn :=
PN

i=1 �
j
i;nki(ti;n) for 1 � j � M and n 2 Z and fxj�n gMj=1;n2Z

be the dual of fxjng. Then, fT (xjn)gMj=1;n2Z becomes an unconditional basis

of T (H) with the dual basis fT (xj�n )gMj=1;n2Z := fSj;ngMj=1;n2Z, which is also
unconditional.

Expanding fx = T (x) in T (H) with respect to fSj;ngMj=1;n2Z, we have

fx(t) =
X
n2Z

MX
j=1

hT (x); T (xjn)iT (H)Sj;n(t)

=
X
n2Z

MX
j=1

hx; xjniHSj;n(t)

=
X
n2Z

MX
j=1

f�j1;n f1x(t1;n) + � � �+ �jN;n f
N
x (tN;n)gSj;n(t):

Uniform convergence of the series (3.2) follows from Proposition 2.3 (c). Fi-
nally, the series (3.2) converges also absolutely since it is an unconditional basis
expansion.

If either KerT = f0g or ki(t) = Ai(k(t)); 1 � i � N , where Ai's are au-
tomorphisms of H, then the �rst assumption KerT � \Ni=1KerTi of Theorem
3.3 is trivially satis�ed. For example, it is so when H = L2[��; �]; 
 = R and

k(t) =
e�it�p
2�

so that T = F�1 is the inverse Fourier transform. In particular,

if N = M = 2, k1(t) = k(t); t1;n = t2;n = tn; and f�j1;nk(tn) + �j2;nk2(tn) j j =
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1; 2 and n 2 Zg is a Riesz basis of H, then Theorem 3.3 is essentially the same
as Theorem 3 in [3].

When H = L2[��w; �w](w > 0);
 = R and

k(t) =
1p
2�

e�it� ; ki(t) =
1p
2�

Ai(�) e
�it� (1 � i � N)

for suitable bounded measurable functions Ai(�)(1 � i � N) on [��w; �w], we
have

T (�)(t) =
1p
2�

Z �w

��w
�(�) eit� d� = F�1(�)(t)

Ti(�)(t) =
1p
2�

Z �w

��w
Ai(�)�(�) e

it� d� = F�1(Ai�)(t) (1 � i � N):

Hence, T (H) becomes the Paley-Wiener space PW�w and then Theorem 3.3
reduces to an asymmetric multi-channel sampling handled in [7].

If fPN
i=1 �

j
i;nki(ti;n)j 1 � j �M and n 2 Zg is a frame of H in Theorem 3.3,

then the sampling series expansion (3.2) still holds.
As in the single channel case, if supi;j;n k�ji;nxj�n k < 1, then the multi-

channel sampling expansion (3.2) is also stable in the following sense.

De�nition 3.4. (cf. Rawn [11] and Yao and Thomas [13] ) We say that
fti;n j 1 � i � N and n 2 Zg is a set of stable sampling for T (H) if there ex-
ists A > 0 which is independent of fx 2 T (H) such that

kfxk2T (H) � A
X
n2Z

NX
i=1

jf ix(ti;n)j2; fx 2 T (H):

Let B > 0 be the upper Riesz bound for the Riesz basis f 1

kSj;nkSj;ng
M
j=1;n2Z

of T (H). Then

kfxk2T (H) � B
X
n2Z

MX
j=1

NX
i=1

j�ji;nf ix(ti;n)j2kSj;nk2

� (sup
i;j;n

k�ji;nSj;nk)2BM
X
n2Z

NX
i=1

jf ix(ti;n)j2

so that (3.2) is a stable sampling expansion with respect to fti;ng when sup
i;j;n

k�ji;n
xj�n k < 1.

We now discuss several examples in which we always takeH = L2[��; �];
 =

R, and k(t) =
1p
2�

e�it� so that T = F�1 is the inverse Fourier transform and

T (H) = PW�.
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Example 3.5. (Sampling with Hilbert transform)
Take ~k(t) = i sgn(�) k(t) so that eT (f)(t) = ~f(t) is the Hilbert transform of

f(t) in PW�. Choosing ftngn2Z = fngn2Z, fxngn2Z = fi sgn� e
�in�

p
2�

gn2Z is an

orthonormal basis of L2[��; �] so that fx�ngn2Z = fxngn2Z. We then have

Sn(t) =
1p
2�

Z �

��
i sgn(�)

e�in�p
2�

eit� d� = �sinc1
2
(t� n) sin

�

2
(t� n)

where sinct :=
sin�t

�t
. Hence, we have

f(t) = �
X
n2Z

~f (n) sinc
1

2
(t� n) sin

�

2
(t� n) ; f(t) 2 PW�:

Using the operational relation
~~f = �f([5, Appendix B]) and the fact that if

f 2 PW�, then so does ~f , we also have

~f(t) =
X
n2Z

f (n) sinc
1

2
(t� n) sin

�

2
(t� n) ; f(t) 2 PW�:

Example 3.6. Here, we derive asymmetric derivative sampling formula on
PW�, in which we take samples from f(t) and f 0(t) with ratio 2:1.

Take k1(t) = k(t) =
1p
2�

e�it� and k2(t) = �i� k(t) = k0(t) so that f1(t) =

f(t) and f2(t) = f 0(t) for f(t) 2 PW�. Now, take the set of sampling points

ft1;n = 3n

2
gn2Z for f1x(t) and ft2;n = 3ngn2Z for f2x(t). With �11;n =

r
3

2
; �12;n =

�21;n = 0 , and �22;n = �p3, f�11;n k1(t1;n) + �12;n k2(t2;n)gn2Z [ f�21;n k1(t1;n) +
�22;n k2(t2;n)gn2Z = f

r
3

4�
e�i3n�=2gn2Z [ f

r
3

2�
i� e�i3n�gn2Z is a Riesz basis of

L2[��; �], of which the dual (cf. [6]) is(r
3

4�
�1;n(�) e

�i3n�=2

)
[
(r

3

2�
�2(�) e

�i3n�

)
; n 2 Z (3.3)

where

�1;n(�) =

8<:
3 (� + �)=2�; � 2 [��;��=3);
1; � 2 [��=3; �=3);
�3 (� � �)=2�; � 2 [�=3; �]

if n is even,

�1;n(�) =

8<:
1=2; � 2 [��;��=3);
1; � 2 [��=3; �=3);
1=2; � 2 [�=3; �]
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if n is odd, and

�2(�) =

8<:
�3i=4�; � 2 [��;��=3);
0; � 2 [��=3; �=3);
3i=4�; � 2 [�=3; �]:

Taking inverse Fourier transform on (3.3), we have a Riesz basis fS1;ngn [
fS2;ngn of PW� where

S1;n(t) =

8>>>><>>>>:

r
2

3
sinc

1

3

�
t� 3n

2

�
sinc

2

3

�
t� 3n

2

�
if n is even,

r
3

8

�
1

3
sinc

1

3

�
t� 3n

2

�
+ sinc

�
t� 3n

2

��
if n is odd,

S2;n(t) = �
p
3

2�
sinc

1

3
(t� 3n) sin

2�

3
(t� 3n) :

With these setting we have the nonsymmetric derivative sampling formula:

f(t) =
X
n2Z

r
3

2
f

�
3n

2

�
S1;n(t)�

p
3f 0(3n)S2;n(t); f(t) 2 PW�:

Example 3.7. We now take k1(t) = k(t) =
1p
2�

e�it� and k2(t) = ei� k(t) so

that f1(t) = f(t) and f2(t) = f(t � 1). We want to express f 2 PW� via

samples from f(t) and f(t� 1) with ratio 3 : 2. Note that f
r

5

6�
e�i5n�=3gn2Z [

f
r

5

4�
ei� e�i5n�=2gn2Z forms a Riesz basis of L2[��; �] with the dual(r

5

6�

1

e�i4�=5 � e�i2�=5
�1;n(�) e

�i5n�=3

)
n2Z

[
(r

5

4�

1

e�i4�=5 � e�i2�=5
�2;n(�) e

i� e�i5n�=2

)
n2Z

(3.4)

where

�1;n(�) =

8><>:
e�i

4
5
� + e�i2n�=3 + e�i

6
5
� ei2n�=3; �� � � < ��=5;

e�i
4
5
� � e�i

2
5
�; ��=5 � � < �=5;

�e�i 25� � e�i2n�=3 � e�i
6
5
� ei2n�=3; �=5 � � � �

and

�2;n(�) =

8><>:
�(�1)ne�i 85� � e�i

2
5
�; �� � � < ��=5;

0; ��=5 � � < �=5;

e�i
4
5
� + (�1)ne�i 85�; �=5 � � � �:
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Then, we can obtain the sampling series

f(t) =
X
n2Z

r
5

3
f

�
5n

3

�
S1;n(t) +

r
5

2
f

�
5n

2
� 1

�
S2;n(t); f(t) 2 PW�;

where fS1;n(t)g [ fS2;n(t)g are the inverse Fourier transforms of functions in
(3.4).

4 Oversampling and recovery of missing samples

We now develop an oversampling expansion, which extends the one in Kramer
[2]. Again, let k and ~k : 
 �! H be H-valued functions. Assume that there
exists ftngn2Z � 
 such that fxn := ~k(tn)gn2Z is a basis of H with the dual
basis fx�ngn2Z. De�ne linear operators T and eT on H by T (x) = hx; k(t)iH := fx
and eT (x) = hx; ~kiH := ~fx, respectively, and assume KerT � Ker eT . Then, both
T and eT are one-to-one, and so T (H) and eT (H) become RKHS's.

Now, let G be a proper closed subspace of H and P : H �! G the orthogonal
projection onto G. Then, for any x 2 G we have

x =
X
n2Z

hx; ~k(tn)iHx�n

so that

x = P (x) =
X
n2Z

hx; ~k(tn)iHP (x�n) =
X
n2Z

~fx(tn)P (x
�
n): (4.1)

Theorem 4.1. Under the above setting there is a sequence of sampling functions
fTngn2Z in T (G) such that for any x 2 G

fx(t) =
X
n2Z

~fx(tn)Tn(t) (4.2)

which converges in T (H) and uniformly on any subset of 
 over which kk(t)kH
is bounded. Moreover, if fxng is a Riesz basis of H, then fTngn2Z is a frame of
T (G).

Proof. Applying T on both sides of (4.1) gives

fx(t) = T (x)(t) =
X
n2Z

~fx(tn)T (P (x
�
n))(t)

=
X
n2Z

~fx(tn)Tn(t);
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where Tn(t) = T (P (x�n))(t). Since

jfx(t)�
X
jnj�N

~fx(tn)Tn(t)j = jT (x)�
X
jnj�N

~fx(tn)T (P (x
�
n))j

= jhx�
X
jnj�N

~fx(tn)P (x
�
n); k(t)iH j

� kx�
X
jnj�N

~fx(tn)P (x
�
n)kHkk(t)kH ;

the series (4.2) converges uniformly on any subset over which kk(t)kH is bounded.
Finally, if fxng is a Riesz basis of H, then fx�ng is also a Riesz basis of H so
that fP (x�n)g is a frame of G since G is a closed subspace of H [1, Proposition
5.3.5]. Hence fTn(t) = T (P (x�n))(t)g is a frame of T (G).

Note that the sample set ftngn2Z oversamples functions in T (G) in the sense
that ftngn2Z leads to a basis fSngn2Z of T (H) (see Theorem 3.2), which prop-
erly contains T (G) but fTngn2Z in Theorem 4.1 may be overcomplete in T (G).
Hence, we may call (4.2) an oversampling expansion of fx in T (G) for x 2 G.

Now assume that �nitely many sample values f ~fx(tn) jn 2 X = fn1; n2; � � � ;
nNgg are missing. Applying eT on both sides of (4.1) gives

~fx(t) = eT (x)(t) =X
n

~fx(tn) eT (P (x�n))(t) (4.3)

which converges not only in eT (H) but also pointwisely in 
 since eT (H) is an
RKHS. Setting t = tnj in (4.3), we have

~fx(tnj ) =
X
n

~fx(tn)eT (P (x�n))(tnj ) for 1 � j � N

=

NX
k=1

~fx(tnk)
eT (P (x�nk))(tnj ) +X

n=2X

~fx(tn) eT (P (x�n))(tnj ); 1 � j � N;

which can be rewritten in the matrix form as

(I�T) f = h

where f = ( ~fx(tn1); � � � ; ~fx(tnN ))T is the column vector consisting of missing
samples, h = (h1; � � � ; hN )T , where

hj =
X
n=2X

~f(tn) eT (P (x�n))(tnj )
and T is the N �N matrix with entries

Tij = eT (P (x�nj ))(tni) = hP (x�nj ); xniiH = hP (x�nj ); P (xni)iH :



120 Y. HONG, J. KIM AND K. KWON

Note that if I�T is invertible, the missing samples f can be recovered uniquely.
In particular, if hTv;vi < kvk2 for any v 2 CN n f0g, then I�T is invertible.
We have:

Theorem 4.2. Under the same hypotheses as in Theorem 4.1, we assume fur-
ther that fxngn is a Riesz basis of H such that xn = U(en) where fengn is an
orthonormal basis of H and U is an automorphism of H. If PU = UP and

spanfeni j 1 � i � Ng \G = f0g; (4.4)

then any �nitely many missing samples f ~fx(tni) j 1 � i � Ng in the oversampling
expansion (4.2) can be uniquely recovered.

Proof. Note �rst that x�n = (U�)�1(en) where fx�ngn is the dual of fxngn. Hence,
we have for any v = (v1; � � � ; vN )T 2 CN n f0g,

hTv;vi =
NX

i;j=1

hP (x�nj ); P (xni)iHvjvi

= hP (U�)�1(

NX
j=1

vjenj ); PU(

NX
i=1

vieni)iH

= h
NX
j=1

vjenj ; U
�1PU(

NX
i=1

vieni)iH

= h
NX
j=1

vjenj ; P (

NX
i=1

vieni)iH

= kP (
NX
j=1

vjenj )k2H

< k
NX
j=1

vjenjk2H =

NX
j=1

jvj j2 = kvk2

since
PN

j=1 vjenj =2 G and fengn is an orthonormal basis of H. Hence, I�T is
invertible.

If, moreover, fxngn is an orthonormal basis of H in Theorem 4.2, then any
�nitely many missing samples f ~fx(tni) j 1 � i � Ng can be uniquely recovered
when the condition (4.4) holds.
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